GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2017

Subject Code: 2171910 Date: 22/11/2017

Subject Name: Power Plant Engineering

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

Seat No.: _____

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Mollier Diagram is permitted.

Q.1	(a)	What is compounding of steam turbines and why it is essential?	03
	(b)	Why feed water treatment is essential in power plants?	04
	(c)	Pressure-Velocity compounded impulse steam turbine.	07
Q.2	(a)	Explain working of Bowl pulverizing mill with neat sketch.	03
	(b)	Explain following terms pertaining to cooling tower: Drift, Approach, Range and Cooling efficiency of cooling tower.	04
	(c)	Dry saturated steam at a pressure of 8 bar enters a	07
	(•)	convergent divergent nozzle and leaves it at a pressure of	0.7
		1.5 bar. If the flow is isentropic and the corresponding	
		expansion index is 1.135;	
		calculate	
		(a) the ratio of cross-sectional area at exit	
		(b) throat for maximum discharge.	
		OR	
	(c)	Gas turbine with Inter cooling, Regeneration and	07
	(C)	Reheating	07
Q.3	(a)	Advantages of Mechanical draught over Natural draught.	03
	(b)	Types of Cooling Towers.	04
	(c)	Combined cycle power plant	07
		OR	
Q.3	(a)	Classification of Condensers.	03
	(b)	Discuss Turbojet Engine, also discuss equations of thrust, Thrust power, Propulsive efficiency and Thermal efficiency.	04
	(c)	Discuss FBC. Explain CFBC with neat sketch	07
Q.4	(a)	Distinguish between force draught and induced draught.	03
	(b)	Main components of nuclear reactor and nuclear control	04
	(c)	Discuss various methods of water treatment.	07
		OR	
Q.4	(a)	Discuss the significance of vacuum in the condenser.	03
	<i>a</i> >	Explain methods to obtain vacuum in short.	0.4
	(b)	Discuss Boiling Water Reactor (BWR) with neat sketch.	04
	(c)	With usual notations derive an expression of estimation of	07
		height of chimney and condition of maximum discharge. Or Prove the following:	
		riove me ionowing.	

		Tg/Ta=2(Ma+1)/Ma	
		Where Tg and Ta are gas and air temperature	
		respectively and ma is mass of air.	
Q.5	(a)	Nozzle governing system	03
	(b)	General Layout of modern thermal power plant.	04
	(c)	The annual peak load on 30 MW power station is 25	07
		MW. The power station supplies load having maximum demand of 10 MW, 8.5 MW, 5 MW and 4.5 MW. The annual load factor is 0.45. Calculate: 1. Average load 2. Energy supplied per year 3. Diversity factor 4. Demand factor	
		OR	
Q.5	(a)	Chain Reaction in Nuclear Power plant	03
	(b)	Discuss In-plant coal handling system	04
	(c)	The data refer to a stage of Parson's reaction turbine: The mean diameter of blade ring is 680 mm. Running speed is 3100 rpm. The steam velocity at exit from fixed blades is 160 m/s. Blade outlet angle is 21°. Steam flow rate through blades is 7.4 kg per second. Draw the velocity diagram and find: (i) Blade inlet angle (ii) Power developed in the stage. (iii) The maximum blade efficiency.	07

Maximum discharge through chimney occurs when

2