GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2017

Subject Code: 2171917	Date: 22/11/2017
-----------------------	------------------

Subject Name: Steam and Gas Turbines

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of steam tables, Mollier chart and calculator is permissible.
- Q.1 (a) State and Draw different types of steam nozzle with neat sketch.
 (b) Give classification of propulsive engine.
 03
 04
 - (c) Derive expression for ideal open cycle gas turbine with inter cooling reheating and regeneration.
- Q.2 (a) Explain the Principle of jet propulsion with neat sketch.
 - (b) Estimate the mass flow rate of steam in a nozzle with the following data:

Inlet pressure and temperature =12 bar and 200°C

Back Pressure = 1bar

Throat Diameter = 10mm

(c) Draw Schematic diagram of turbo prop engine and explain its **07** working.

OR

- (c) Explain the working of turbojet engine with neat sketch.
 (a) Explain working of mixed pressure turbine.
 03
- Q.3 (a) Explain working of mixed pressure turbine.
 (b) Explain pressure compounding of impulse turbine with the help of
 04
 - neat sketch.

 (c) A simple impulse turbine has a mean blade ring diameter of 100cm 07
 - and runs at 5000 rpm. The nozzle angle is 16° and the steam leaves at nozzles with a velocity of 800m/s. The blades are equiangular and the blade friction factor is 0.9. Determine: (i) the inlet angles of the blade for shockless entry of steam, (ii) the diagram power for a steam flow of 800 kg/h. (iii) the diagram efficiency, (iv) the axial thrust, and (v) loss of kinetic energy due to friction.

OR

- Q.3 (a) Explain working of back pressure turbine.
 - (b) What is function of governing system of steam turbine? Compare 04 throttle and Nozzle Governing.
 - (c) The following particulars refer to a stage of a parson's steam turbine comprising one ring of fixed blades and one ring of moving blades: Mean diameter of blade ring=80 cm, turbine speed=3000 rpm, steam velocity at exit from blades =180m/s, blade outlet angle= 16°, steam flow through blades=10kg/s. Draw the velocity diagram and find the following; (i) blade inlet angle, (ii) tangential force on the ring of moving blades,(iii) power developed in stage.
- Q.4 (a) List out the advantages of closed cycle gas turbine over open cycle gas turbine power plant.
 - **(b)** Derive the expression for net work done by the gas turbine power plant.
 - (c) Derive expression for mass flow rate through the nozzle. 07

04

07

Q.4	(a)	Explain with neat sketch working of steam and gas combined cycle	03
		power plant.	
	(b)	Explain effect of operating variables on work ratio in gas turbine	04
		power plant.	
	(c)	Air enters the compressor of an open cycle, constant pressure gas	07
		turbine at 1 bar and 27° C. The pressure of air after compression	
		becomes 4 bar. The isentropic efficiencies of compressor and turbine	
		are 78% and 84% respectively. The air fuel ratio used is 75:1. If the	
		rate of flow of air is 2.5 kg/s, determine the power developed and	
		thermal efficiency of the cycle. Take $C_p=1.005$ kJ/kg K and $\gamma=1.4$ both	
		for air and gases. The calorific value of fuel used = $42,000 \text{ kJ/kg}$.	
Q.5	(a)	What are the main types of gas turbine combustion chamber?	03
	(b)	Describe any four requirements of a typical combustion chamber of	04
	` /	the gas turbine power plant.	
	(c)	Explain different methods to improve the thermal efficiency of a gas	07
	()	turbine power plant with T-S diagram.	
		OR	
Q.5	(a)	Enlist different losses in steam turbine.	03
•	(b)	Write short note on labyrinth packing.	04
	(c)	Explain with neat sketch various method of attachment of blade to	07
	(0)	turbine rotor.	07
		turonic rotor.	
