GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-VII(NEW) • EXAMINATION – WINTER 2016	
Sul	bject	t Code:2170203 Date:18/11/2010	6
Su	bject	Name: Vehicle Dynamics	
	-	0.30 AM to 1.00 PM Total Marks: 70	Ŋ
	ructio		J
		Attempt all questions.	
	2.		
	3.	Figures to the right indicate full marks.	
Q.1	(a) (b)	Explain vehicle fixed co-ordinate system with neat sketch. Derive the equation to calculate the dynamic axle load for the following	07 07
	(10)	condition of four wheeler:	07
		a) When the vehicle on level ground under static condition.	
		b) When the vehicle on grads with low speed acceleration.	
0.3	(.)	,	07
Q.2	(a)	Derive Tractive force for power limited acceleration. Explain relationship and impact of vehicle speed to stopping distance, stopping	07 07
	(b)	time and energy consumed in braking.	U/
		OR	
	(b)	Write short notes:	07
	(~)	a) Lumped mass	0.
		b) Pressure distribution around the vehicle	
0.2	(-)	A combas a frantal region and area of 1.6 m ² and travels at 60 km ² /b. It has a dream	07
Q.3	(a)	A car has a frontal projected area of 1.6 m ² and travels at 60 km/h. It has a drag coefficient of 0.35 based on frontal area. Calculate the power required to	07
		overcome wind resistance by the car. if the drag coefficient is reduced to 0.30 by	
		streaming, for the same power expended in overcoming air resistance, what	
		speed of the car is possible. Take air density as 1.2 kg/m ³	
	(b)	Define the following term:	07
	(~)	a) Wheel centre	0.
		b) Camber angle	
		c) Rolling resistance	
		d) Suspension roll	
		e) Neutral steer	
		f) Under steer	
		g) Transient state	
		OR	
Q.3	(a)	Determine the following for the tire if $\mathbf{R_w} = 0.98 \ \mathbf{R_g}$.	07
		a) Longitudinal slip S if geometric radius (R _g) of tire is 10 cm.	
		 b) Wheel angular velocity (ω_w) if the speed of the wheel is 100 km/h. c) Equivalent angular velocity (ω_{eq}) of the tire. 	
	(b)	Draw and define following related to tire force system:	07
	(D)	a) Longitudinal force	U/
		b) Normal force	
		c) Lateral force	
		d) Roll moment	
		e) Pitch moment	
		f) Yaw moment	
Q.4	(a)	Explain quasi static rollover of suspended vehicle showing all acting forces.	07
√. •	(a) (b)	Derive an expression for lateral slip in tire for a simple model.	07
		2 cm. c. and confrontion for factor only in the for a simple model.	01
		OR	

Q.4 (a) Define ride and explain ride dynamic system.

07

4 //	
httn://www.	.guiaratstudy.com
IIILLIJ.// VV VV VV	. z u iai atstuu v .com

	(b)	Draw and explain the arbitrary forces acting on a uphill motorcycle.	07
Q.5	(a) (b)	Explain the various steering systems forces and moments with neat sketch. Explain functions of vehicular steering systems and steering geometry errors.	07 07
Q.5	(a) (b)	OR Explain quasi static rollover of rigid vehicle showing all acting forces. Explain in detail effect of Aerodynamic drag and Aerodynamic aids on performance of vehicle.	07 07
