GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII (NEW) EXAMINATION - WINTER 2017

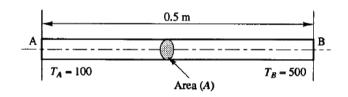
Subject Code: 2181925 Date: 15/11/2017 **Subject Name: Computational Fluid Dynamics(Department Elective III) Total Marks: 70**

Time:02:30 PM TO 05:00 PM

Instructions:

Seat No.: ____

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.


			MARKS
Q.1	(a)	Considering an example of a viscous flow over a flat surface, explain the concept of stretched (compressed) grid.	03
	(b)	Discuss the analogy between the steady state and unsteady state	04
	(c)	Laplace equation using proper physical interpretation. Discuss the philosophy of the pressure correction method along with the boundary conditions.	07
Q.2	(a)	Distinguish between Alternate-Direction-Implicit (ADI) technique and Crank-Nicolson scheme.	03
	(b) (c)	What exactly the Cauchy condition in fluid dynamics represents? Derive the integral form of conservation of linear momentum equation for fixed and moving control volume. OR	04 07
	(c)	Derive the governing equations for velocity boundary layer.	07
Q.3	(a)	Explain the statement : "most common finite-difference representations of derivatives are based on Taylor's series expansions"	03
	(b) (c)	Difference between discretization error and round-off error. Using Taylor's series, derive the first order forward-difference and rearward-difference expressions for $\partial u/\partial y$. OR	04 07
Q.3	(a)	What is the need for a staggered grid during the central differencing of the incompressible Navier-Stokes equations?	03
	(b)	Explain how to find a second-order-accurate finite-difference at the boundary using a polynomial approach.	04
	(c)	Discuss the MacCormack method with suitable example.	07
Q.4	(a) (b) (c)	Derive Reynolds Transport Theorem. Explain the Lax-Wendroff technique for solving marching problems. Discuss the instability issues related to QUICK scheme and its reformulation.	03 04 07
		OR	
Q.4	(a) (b) (c)	What id the physical significance of Crocco equation? Discuss the algebraic grid generation technique without clustering. With the help of flowchart, explain the SIMPLE algorithm. What is the need of staggered grid?	03 04 07

Q.5

- Q.5 (a) What are the four basic rules the FVM discretisation equation should obey to ensure the physical realism and overall balance.
 (b) Distinguish between stepwise profile and piecewise- linear profile assumptions for discretization.
 (c) Explain finite volume method for one-dimensional steady state diffusion problems.
 - (a) Discuss in detail the advantages and disadvantages of FVM.

 (b) Explain: Conservativeness, Boundedness and Transportiveness.

 (c) Consider the problem of source- free heat conduction in an insulated rod whose ends are maintained at constant temperatures of 100°C and 500°C respectively. The one-dimensional problem sketched in figure is governed by $\frac{d}{dx} \left(k \frac{dT}{dx} \right) = 0$

Calculate steady state temperature distribution in the rod. Thermal Conductivity equals 1000W/m K, cross section area is 10x10⁻³ m².