# **GUJARAT TECHNOLOGICAL UNIVERSITY**

BE - SEMESTER-VIII (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2181924 Date: 06/05/2017

**Subject Name: Design of Heat Exchanger(Department Elective III)** 

Time: 10:30 AM to 01:00 PM Total Marks: 70

## **Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Discuss recuperative and regenerative type of Heat Exchangers along with their specific applications
  - (b) Explain the factors to be considered while selecting heat exchangers? 07
- Q.2 (a) Compare the LMTD and  $\epsilon$ -NTU approach for analysis and design of heat 07 exchangers.
  - (b) Explain the design of double pipe heat exchangers. 07

#### OF

- (b) Draw the temperature profile of a heat exchanger for the following condition. 07 (1) parallel flow (2) counter flow (3) Ch  $\rightarrow \infty$  (4) Cc  $\rightarrow \infty$
- Q.3 (a) Discuss various shell types suggested by TEMA standard for shell and tube heat exchangers.
  - (b) Derive expression for hydraulic diameter and equivalent diameter in case of double pipe heat exchanger with and without fin with neat sketch.

#### OR

- Q.3 (a) A counter flow shell and tube heat exchanger is used to cool engine oil flowing through the tube at 0.25 kg/s. The specific heat of is 2.2kJ/kg-k. This oil is cooled by the water, which flows at 0.3 kg/s. The oil enters at 560 K and leaves at 340 K. The cooling water enters at 298 k. find the length of the tube if the heat transfer coefficient from oil to tube surface is 2340 W/m<sup>2</sup> -K, and from the tube to water is 6215 W/m<sup>2</sup> -K. The mean diameter of the tube is 18 mm.
  - (b) Explain the advantages and disadvantages of double pipe heat exchangers. 07
- Q.4 (a) Explain giving precious reason why fouling fluids are not used in compact heat exchangers
  - (b) What is fouling? Explain types and mechanisms of fouling. 07

#### OR

- Q.4 (a) Explain different techniques for heat transfer enhancement in heat exchanger. 07
  - (b) Describe in Brief Performance evaluation of Heat Transfer Enhancement 07 technique.
- Q.5 (a) Air at 1 atm and 400 K and with a velocity of u∞= 10 m/s flows across a compact heat exchanger matrix having σ= (Amin/Afr) = 0.534 and Hydraulic diameter (Dh) = 0.3633 cm. Calculate the heat transfer coefficient, h and frictional pressure drop for air side. The length of matrix is 0.6 m. Use following properties ρ = 0.8825 kg/m3, μ = 2.29 × 10-5 Kg/ms, Cp = 1013 J/kgK, Pr = 0.719. Use Figure. 1 for extra data.
  - (b) State and explain the basic advantages and limitations of compact heat exchangers.

### OR

Q.5 (a) Discuss Bell-Delaware method to determine shell-side heat transfer coefficient 07

**07** 

07

**(b)** Shell and tube type heat exchangers are the most common type of heat exchangers .Why? State its different applications in industries.

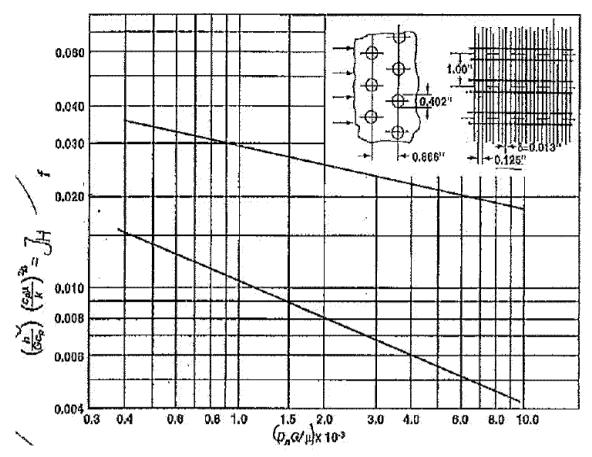



Figure: 1

\*\*\*\*\*