GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII (NEW) EXAMINATION - WINTER 2017

Subject Code: 2181924 Date: 15/11/2017

Subject Name: Design of Heat Exchanger(Department Elective III)

Time:02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

						MARKS

- Q.1 (a) List and Explain the basic principles of heat transfer
- 03
- **(b)** List and explain the factors to be considered while selecting heat exchangers.
- 04 07
- (c) Compare the LMTD and ε-NTU approach for analysis and design of heat exchangers.
- 03
- Q.2 (a) What is hairpin heat exchanger? Define hydraulic (Dh) and Equivalent (De) diameters for bare inner tube and annulus of a hairpin heat exchanger.
- **(b)** Draw a parallel and series arrangements of hairpin heat exchanger
- 04 07

07

03

- (c) Water at a flow rate of 5,000 kg/h will be heated from 20°C to 35°C by hot water at 140°C. A 15°C hot water temperature drop is allowed. A number of 3.5 m hairpins of 3 in. (ID = 0.0779 m) by 2 in. (ID = 0.0525 m, OD = 0.0603 m) counterflow double-pipe heat exchangers with annuli and pipes, each connected in series, will be used. Hot water flows through the inner tube. Fouling factors are: Rfi = 0.000176 m2 · K/W, Rfo = 0.000352 m2 · K/W. Assume that the pipe is made of carbon steel (k = 54 W/m · K). The heat exchanger is insulated against heat losses.
 - 1. Calculate the number of hairpins.

Properties at (Tb=132.5°C) Properties at (Tb=27.5°C)

$\rho = 932.53 \text{ kg/m}^3$,	$c_p = 4.268 \text{ kJ/kg} \cdot \text{K}$	$\rho = 996.4 \text{ kg/m}^3$,	$c_p = 4.179 \text{ kJ/kg} \cdot \text{K}$
$k = 0.687 \text{ W/m} \cdot \text{K},$	$\mu = 0.207 \times 10^{-3} \text{ Pa} \cdot \text{s}$	$k = 0.609 \text{ W/m} \cdot \text{K},$	$\mu = 8.41 \times 10^{-6} \text{ Pa} \cdot \text{s}$
Pr = 1.28		Pr = 5.77	

OR

- (c) In a double pipe heat exchanger Ch = 0.5Cc. The inlet temperatures of hot and cold fluids are th₁ and tc₁. Deduce and expression in terms of th₁, tc₁, and th₂ for the ratio of the area of the counter-flow heat exchanger to that of parallel flow heat exchanger which will give the same hot fluid outlet temperature th₂. Find this ratio if th₁ = 150°C, tc₁ = 30°C, and th₂ = 90°C.
- Q.3 (a) What is the use of tie rods and spacers in shell-and-tube heat exchangers
 - (b) What is a baffle? Discuss different type and geometry of baffles used in shell and tube heat exchanger.
 - (c) Discuss various shell types suggested by TEMA standard for shell and tube heat exchangers with neat sketch.

OR

- Q.3 (a) List the steps for design procedure of shell and tube condenser design?
 - (b) Can the outlet temperature of the cold fluid in a heat exchanger be higher than the outlet temperature of the hot fluid in a parallel-flow heat exchanger? How about in a counter-flow heat exchanger? Explain.
 - (c) A heat exchanger is to be designed to heat raw water by the use of condensed water at 67 °C and 0.2 bar which will flow in the shell side with a mass flow rate of 50,000 kg/h. The heat will be transferred to 30,000 kg/h of city water coming from a supply at 17 °C. Water outlet temperature should not be less than 40 °C. A fouling resistance of 0.000176 m2.K/W is suggested. Calculate the overall heat transfer coefficient for fouled as well as clean surfaces and length of tube for 2-P shell and tube heat exchanger using "Kern method". Use following specifications

specifications			and	Correia			
Tube side specifica	tion	S	Shell side specification				
O.D. = 19 mm		S	Shell diameter = 0.39 m				
I.D. = 16 mm		P	Pitch size = 0.024				
No. of tubes = 124		В	Baffle spacing = 0.25 m				
Tube layout- Squar	e Pitch		$(D_{G})^{0.55}$	$(\mu C)^{1/3} (\mu)^{0.14}$			
$K_{\text{tube}} = 60 \text{ W/m}^2 \text{K}$			Nu = 0.36 $\left(\frac{D_e G_s}{\mu}\right)^{0.35} \left(\frac{\mu C_p}{k}\right)^{1/3} \left(\frac{\mu_b}{\mu}\right)^{0.35}$				
$Nu_b = \frac{(f/2)(Re_b - 1000)Pr}{1 + 12.7(f/2)^{1/2}(Pr^{2/3} - 1)}$			(μ)	$(\mathbf{k})(\mu_{\mathbf{w}})$			
Where;							
$f = (1.58 \ln Re - 3.$	$(28)^{-2}$						
Properties	Units	•	Tube side	Shell side			
ρ	Kg/m ³		996.8	983.2			
Cp	J/kg K		4179	4184			
μ	$N.s/m^2$		8.2×10 ⁻⁴	4.67×10 ⁻⁴			
k	W/m K		0.610	0.652			
Pr	-		5.65	3.00			
$\mu_{\rm w}$ =6.04×10 ⁻⁴ N.s/m ²							

- Q.4 (a) Why compact heat exchangers are more suitable for gaseous fluid
 - (b) When is a heat exchanger classified as being compact? Name the specific exchanger construction type that may be used in the following applications:
 - (a) Air Preheater (b) automotive Radiator (c) Condenser of an air conditioner
 - (c) Discuss Bell-Delaware method taking into account the effect of various leakage and bypass steams to evaluate shell side heat transfer coefficient

OR

- Q.4 (a) State basic advantages and limitations of compact heat exchangers.
 - **(b)** Explain giving the precise reasons weather the following statements are true or false:
 - 1. The square lay out is more effective in heat transfer than the triangular layout of tubes.
 - 2. Plate heat exchangers are widely used in milk pasteurizing
 - (c) Derive an expression to calculate the compactness(β) of the plate fin heat exchangers having a rectangular fin configuration as shown in Fig No.1

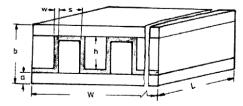


Fig No. 1

Q.5 (a) Classify plate fin and tube fin heat exchangers.

03

03

04

07

03

07

03

04

http://www.gujaratstudy.com

	(b) (c)	Classify regenerators. Explain rotary regenerators. According to constructional features classify heat exchange equipments.								
		OR								
Q.5	(a)	Explain pinch analysis.	03							
_	(b)	Discuss the various methods for enhancement of heat transfer.								
	(c)	Explain methods for performance evaluation of Heat Transfer	07							
		Enhancement technique								