	Seat No.:	Enrolment No
--	-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII (NEW) - EXAMINATION - SUMMER 2018

Subject Code: 2181910 Date: 04/05/2018

Subject Name: Renewable Energy Engineering

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

- Q.1 (a) Explain reserves, production and utilization of primary energy sources in India
 - (b) Describe the essentiality for exploration of renewable sources of energy. 04
 - (c) Write short notes on classification of energy resources. Also explain which type of alternate energy source is the best suitable for rural and agricultural applications and why?
- Q.2 (a) Define the following terms:

03

07

07

07

- (1) Solar Altitude Angle (2) Declination Angle
- (2) Hour Angle
- (b) Write short note on effect of various parameters on performance of flat plate collectors.
- (c) The following data refers to liquid flat plate collector, Collector tilt = 22.15°, Available radiation = 1100 W/m2, Absorber plate area = 2.1 m2, Plate emissivity = 0.12, Glass cover emissivity = 0.88, Number of covers = 2, Mean plate temperature = 68° C, Flux available at absorber plate = 800 W/m2, Side loss coefficient = 0.8 W/m2 -K, Bottom loss coefficient = 0.6 W/m2 -K, Inlet water temperature = 30° C, Ambient air temperature = 25° C, Wind speed = 1.8 m/s, Mass flow rate of water = 62 kg/hr. Determine, (1) Overall heat loss coefficient, (2) Outlet water temperature from the collector (3) Efficiency of collector. Use Test et al. Correlation. Take area of collector is 10% more that area of absorber plate

OR

- (c) A cylinder parabolic collector having 2.5 m width and 10 m long is used to heat fluid entering at 150 0C with a flow rate of 7.5 kg/min (Cpf = 1.25 kJ/kg 0C . The diameter of the absorber tube is 6.5 cm which is covered with glass tube. Take following data: Solar intensity = 700 W/m2 Atmosphere temperature = 30 0C Product of absorptivity and transmissivity of absorbing surface for radiation (ατ)ab = 0.8, Reflectivity of radiation (rr) =0.93, Transmissivity of glass (τg) = 0.85. Also take collector efficiency factor = 0.85, Heat lost coefficient = 8W/m2 0C. Heat transfer coefficient inside the tube is 1 and tilt factor is also 1. Find: 1. Useful heat gain and exit temperature of the fluid. 2. Collector efficiency.
- Q.3 (a) Explain basic operational principles of solar cell.

- 03 04
- (b) What are solar ponds? Discuss working of solar pond with help of neat sketch.(c) Enlist types of solar thermal power plant. Discuss working of solar pond
- electrical power plant with neat sketch.

OR

Q.3	(a)	Explain future prospects of MHD generation.									03		
	(b)										04		
		(1) Annual savings(2) Cumulative savings(2) Life cycle savings(4) Payback period.											
	(c)										ficient	07	
		for airfoil DUV400. Find the design angle of attack.											
		Angle											
		of	2	4.1	6.2	8.1	10.2	11.3	12.1	13.2	14.2	15.3	
		attack											
		Lift	0.2	0.54	0.70	0.0	0.02	0.00	0.05	0.00	1.01	1.00	
		coeffi	0.3	0.54	0.79	0.9	0.93	0.92	0.95	0.99	1.01	1.02	
		cient Drag											
		coeffi											
		cient ×	1.16	1.44	1.46	1.62	2.74	3.03	3.69	5.09	6.48	7.76	
		10^{-2}											
		Calculate	lift and	d drag f	force pe	r unit le	ength o	f blade	for the	followir	ng data.	Design	
		wind spe	ed = 1	0 m/sec	e Atmos	spheric	pressu	re = 1.0	01bar C	hord le	ngth =	15 cm.	
		Atmosph		_									
Q.4	(a)	Write sh			_								03
	(b)											04	
	(c)	,									07		
		mill. Also state the assumption in theory and draw the variation of pressure											
		and velocity in wind mill.											
							OR						
Q.4	(a)										03		
	(b)										04		
	(c)										07		
		of neat sketch									0.4		
Q.5	(a)										03		
	(b)									04			
	(c)										07		
o =		OR What do you understand by geothermal energy? Give its main application.											
Q.5	(a)		•			•		_,			applicat	ion.	03
	(b)										04		
	(c)	Explain with neat sketch the basic and working principle of MHD generator. Also compare with conventional power plant.								07			
		compare	with co	mventic	mai dow	er bian	ι.						
