Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY MBA - SEMESTER-I • EXAMINATION – SUMMER • 2015

	•	Code: 2810007		Date: 02-06-2015	
T	_	Name: Quantitative Analy 4:30 pm – 17:30 pm ons:	sis – I ((QA-1) Total Marks: 70	
	2.	Attempt all questions. Make suitable assumptions wher Figures to the right indicate full		sary.	
Q.1 (a)	Cho	ose the correct options for the follo	wing quest	tions.	6
1.	In whi	ch of the following situation, Binor	mial distrib	oution is not applicable?	
	A.	Gender of a new born baby	B.	Result in an examination	
	C.	Rating of a new movie	D.	Result of a Tennis match	
	When	•		ode, the highest point on the curve is called:	
2.	A.	Mean	В.	Median	
	C.	Mode	D	All of these ood approximation of the Binomial?	
3.	A.	N=40, p=0.32	B.	N=40, q=0.79	
٥.	C.	N=200, q=0.98	D.	N=10, p=0.03	
		Finite correction factor does not have		· L	
4.	A.	> 0.05	В.	> 0.50	
	C.	< 0.5	D.	None of these	
	Assu	me that you take a sample and ca	alculate sa	mple mean as 100. You then calculate the	
	uppe	r limit of a 90% confidence interva	l for μ; its	value is 112. What is the lower limit of this	
5.	confi	dence interval?			
	A.	88	В.	92	
	C.	100	D.	175	
_		-	-	le-2 has 9 elements with S2=22, then Sp2=	
6.	A.	19	В.	361	
Q.1	C. (b)	367 Explain the given terms in brief:	D.	19.5	04
Ų.1	(D)	1.Ogive			V4
		2.Kurtosis			
		3.Exponential distribution			
		4. Central Limit Theorem			
Q.1	(c)	What is hypothesis? Describe type	es of hypot	hesis.	04
Q.2	(a)	•	quency dis	equency distribution? Explain various terms stribution. Also highlight the difference in	07
	(b)	Assume that the daily demand for distributed with a mean of 25000 a. What are the chances that daily b. What are the chances that the d	or unleade gallons and demand w aily demar	d gasoline at a service station is normally d a standard deviation of 5000 gallons. vill exceed 30000 gallons? and will be less than 15000 gallons? pect 95% of the daily demands to lie?	07

- (b) In a bolt factory, machines A, B, C manufacture 25%, 35%, 40% bolts respectively. Out of these bolts, 5%, 4%, 12% defective ones came from machines A, B, C respectively. Find the probability that a bolt found to be defective came from machine B.
- Q.3 (a) Explain the term Random variable associated with an Experiment. Thereafter 07 distinguish between discrete and continuous probability distributions also mentioning types of discrete and continuous distributions.
 - (b) Find the equation of the regression line for the following data and compute the 07 residuals.

X	15	8	19	12	5
Y	47	36	56	44	21

OR

- Q.3 (a) Differentiate Type I and Type II error and Explain with examples.
 - (b) Nine computer-components dealers in major metropolitan areas were asked for their prices on two similar colour inkjet printers. The results of this survey are given below. At α =0.05, is it reasonable to assert that, on average, the ABC printer is less expensive than XYZ printer?

	Dealer	1	2	3	4	5	6	7	8	9
	ABC	250	319	285	260	305	295	289	309	275
ĺ	XYZ	270	325	269	275	289	285	295	325	300

- Q.4 (a) What do you understand by probability sampling? Describe Stratified and Cluster 07 sampling designs? What is the difference between a cluster And a strata?
 - (b) The following table gives the number of accounting clerks committing errors and not committing errors between trained and untrained clerks working in an organisation:

Clerks	Committing	Not	Committing	Total
	errors	errors		
Trained	70	530		600
Untrained	155	745		900
Total	225	1275		1500

Test the effectiveness of training in preventing errors. Use 0.05 level of significance (Given chi-square at 1 d.f and a=0.05=3.841)

OR

- Q.4 (a) Write short note on chi square test of goodness of fit.
 - (b) The following data show the number of claims processed per day for a group of four insurance company employees observed for a number of days. Test the hypothesis that the employees' mean claims per day are all the same. Use the 0.05 level of significance.

Employee 1	15	17	14	12		
Employee 2	12	10	13	17		
Employee 3	11	14	13	15	12	
Employee 4	13	12	12	14	10	9

Q.5 Case Study

Gayatri Machine works is in production of machine tools. It claimed that average life time is 52 days with a variation of 14 days. Life time (in days) of an engineering component was measured on a sample of 200 units during Oct 2013 to Dec – 2013. Based on the test results, company obtained frequency distribution of life time of components as shown in table – 1. Due to huge demand in the market, company received a good response and the sales of the component increased in first half of the year 2014. Suddenly, during second half of the year 2014, there were complaints about the average quality of the component. Engineering companies complained that the average quality has gone down and efficiency of the component has also changed. To verify these claims it was necessary to determine current status of production of the components. For this, a sample of 200 components was tested for average life time and

07

07

07

07

14

standard deviation (in days) during July – 2014 to Sept – 2014. Based on this experiment of testing outgoing quality, following frequency distribution of life time of components was obtained.

Table -1

Life Time(20 - 30	30–40	40–50	50-60	60-70	70-80	80–90
Days)							
No. of	15	30	44	60	30	14	07
Components							
(Dec - 2013)							
No. of	25	40	60	35	20	15	05
Components							
(Sept - 2014)							

You are required to test the following claims at 1% level of significance:

- (I) Average life time of the components has gone down significantly from Dec 2013 to Sept 2014;
- (II) Variance of life time of the components has changed significantly from Dec-2013 to Sept-2014.

Prepare a summary report on average and variance of life time of components. Also write your suggestion based on this testing experiment.

OR

Q.5 Case Study

The following is the Forbes magazine's list of India's twenty Billionaires for 2006 titled. Comment on the advisability of using appropriate measures of location and dispersion including five number summaries for the both the parameters relating to net worth and age. Any comment about the relationship of age with net worth?

Rank	Name	Net worth (\$billion)	Age
1	Lakshami Mittal	20.00	55
2	Azim Premji	11.00	60
3	Mukesh Ambani	7.00	48
4	Anil Ambani	5.50	46
5	Kushal Pal Singh	5.00	74
6	Sunil Mittal	4.90	48
7	Kumar Birla	4.40	38
8	Tulsi Tanti	3.70	47
9	Pallonji mistry	3.30	76
10	Anurag Dikshit	3.10	-
11	Shiv Nadar	3.00	60
12	Shashi Ruia	2.70	62
13	Adi Godrej	2.30	63
14	Anil Agarwal	2.10	52
15	Dilip Shanghvi	2.00	50
16	Naresh Goyal	1.90	56
17	Indu Jain	1.70	-
18	Venugopal Dhoot	1.60	52
19	Malvinder Singh	1.55	_
20	Rahul Bajaj	1.50	67

14