Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY MBA – SEMESTER 01–• EXAMINATION – SUMMER 2017

Subjec	t Co	de: 2810007							D	ate: 08/05/2	2017
•		me: Quantitative	Analy	sis.	I						
•		0 AM TO 01.30 P	•							Total Mark	s: 70
Instructi		V V VV -									
		tempt all questions.									
		ake suitable assumpti	ons whe	reve	r nece	essary.	•				
3	. Fi	gures to the right indi	cate full	mai	ks.						
Q.1 (a)		Objective Questions									
1.		sum of deviations abou	it the arit	thme	tic me	ean is a	always	3			6
	_	al to	_	. 4							
	Α.	zero	В.		e vari						
	C.	the mean absolute	D.		e stan						
2	337L:	deviation	ЮТ - 1		viatio		·				
2.	wnı valu	ch of the following is N	OI a leg	gium	ate pr	odadii	ııy				
	A.	0.67	В.	1 4	5/16						
	C.	0.07	D. D	4/							
3.	_	standard deviation of a			_	on is					
3,		monly called	sampini	5 413	uioun	011 15					
	A.		В.	th	e unif	orm sp	read				
	C.	statistical margin	D.			dard e					
4.		gression analysis, the d									
		wn as the	1								
	A.	predictor variable	В.	ex	plana	tory va	ariable				
	C.	exogenous variable	D.	re	spons	e varia	ble				
5.	A m	easure of the degree of	relatedne	ess o	f two	variab	les is				
	_										
	A.	regression	В.		rrelat						
	C.	residual	D.		ast sq						
	a.	D(A) 0.40 D(D)	0.50 D		alysis		r· 1				
6.			0.50, P($(A \cap B) = 0.15. \text{ Find}$							
		∪ B) 0.90	D	1	05						
	C.	0.75	В. D.		65						
Ο1		1. Coefficient of Corr		v.	05						0.4
Q.1	(b)	2. Mutually Exclusive									04
		3. Standard Error of the									
		4. Sampling Error	ic ivicuii								
Q.1	(c)	Explain the term Ku	rtosis aı	nd ty	mes o	f Kur	tosis x	with si	nitabl	e examples	04
Q.1	(0)	Explain the term ix	irtosis ui	ild t	pes c	ı ıxuı	(0010)	VILII O	шш	e exumples.	0,
Q.2	(a)	Explain four level o	f data m	eası	ıreme	nt wit	h suit	able e	xamp	les	07
~		*							•		
	(b)	Determine the Pear	rson Pro	oauc	ı-moi	nent	correl	auon	coen	ncient for the	07
		following data	1 1	10	0	· ·		2]	
		X		10	9	6	5	3	2		
		<u>Y</u>	8	4	4	5	7	7	9		

Class	Interval Frequency
30-under 32	5
32-under 34	7
34-under 36	15
36-under 38	21
38-under 40	34
40-under 42	24
42-under 44	17
44-under 46	8

Q.3 (a) Explain the three types of probability with suitable examples.

07 07

(b) A random sample of voters in Rajkot is classified by age group, as shown by the following data.

Age	Group Frequency
18-under 24	17
24-under 30	22
30-under 36	26
36-under 42	35
42-under 48	33
48-under 54	30
54-under 60	32
60-under 66	21
66-under 72	15

- a. Calculate the mean of the data.
- b. Calculate the mode.
- c. Calculate the variance.
- d. Calculate the standard deviation.

OR

- Q.3 (a) A study by Khyati Research Associates for the NSE Market revealed that 43% of all Indian adults are stockholders. In addition, the study determined that 75% of all Indian adult stockholders have some college education. Suppose 37% of all Indian adults have some college education. An Indian adult is randomly selected.
 - a. What is the probability that the adult does not own stock?
 - b. What is the probability that the adult owns stock and has some college education?
 - c. What is the probability that the adult owns stock or has some college education?
 - d. What is the probability that the adult has neither some college education nor owns stock?
 - e. What is the probability that the adult does not own stock or has no college education?
 - f. What is the probability that the adult has some college education and owns no stock?
 - (b) In the past few years, outsourcing overseas has become more frequently used than ever before by U.S. companies. However, outsourcing is not without problems. A recent survey by Purchasing indicates that 20% of the companies that outsource overseas use a consultant. Suppose 15 companies that outsource overseas are randomly selected.
 - a. What is the probability that exactly five companies that outsource

overseas use a consultant?

- b. What is the probability that more than nine companies that outsource overseas use a consultant?
- c. What is the probability that none of the companies that outsource overseas use a consultant?
- d. What is the probability that between four and seven (inclusive) companies that outsource overseas use a consultant?
- Q.4 (a) A population proportion is .58. Suppose a random sample of 660 items is sampled randomly from this population.
 - a. What is the probability that the sample proportion is greater than .60?
 - b. What is the probability that the sample proportion is between .55 and .65?
 - c. What is the probability that the sample proportion is greater than .57?
 - d. What is the probability that the sample proportion is between .53 and .56?
 - e. What is the probability that the sample proportion is less than .48?
 - (b) Explain the different discrete distribution and continuous distribution with suitable examples.

OR

- Q.4 (a) Explain in detailed on Sampling Techniques.
 - (b) The data below shown in table are related to randomly sample nine companies from the handbook of common stocks and records the P/E ratios of each of these companies at the end of the year 1 and at the end of year 2 are given below.

Company	Year 1 P/E Ratio	Year 2 P/E Ratio
1	8.9	12.7
2	38.1	45.4
3	43.0	10.0
4	34.0	27.2
5	34.5	22.8
6	15.2	24.1
7	20.3	32.3
8	19.9	40.1
9	61.9	106.5

Use $\alpha = 0.01$ to test whether there is significant difference in the average P/E ratio between year 1 and year 2.

Q.5 Amar Dairy would like to know whether the sales of milk are distributed uniformly over a year so they can plan for milk production and storage. In this situation, the producers are attempting to determine whether the amounts of milk sold are the same for each month of the year. They ascertain the number of gallons of milk sold by sampling one large supermarket each month during a year, obtaining the following data.

Month	Gallons	Month	Gallons
January	1610	August	1350
February	1585	September	1495

14

07

07

07

07

March	1649	October	1564
April	1590	November	1602
May	1540	December	<u>1655</u>
June	1397	Total	18,477
July	1410		

Use $\alpha = 0.01$ to test whether the data fit a uniform distribution.

OR

Q.5 A company has three manufacturing plants, and company officials want to determine whether there is a difference in the average age of workers at the three locations. The following data are the ages of five randomly selected workers at each plant. Perform a one-way ANOVA to determine whether there is a significant difference in the mean ages of the workers at the three plants. Use $\alpha = 0.01$.

****	/		
Plant	(Emp	lovee	Ages)

1	2	3
29	32	25
27	33	24
30	31	24
27	34	25
28	30	26

14