Seat No.: _____

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER- I • EXAMINATION - SUMMER - 2019

Subject Code: 2610003 Subject Name: Discrete Mathematics for Computer Science Time: 02.30 PM TO 05.00 PM Instructions: Date: 16/05			
Q.1	(a)	 (1) Test the validity of the following logical consequences. All dogs fetch. Ketty does not fetch. Therefore Ketty is not a dog. (2) Let X = {1,2,3,4} and R = { (1,1),(1,4),(4,1),(4,4),(2,2),(2,3),(3,2),(3,3)} 	03
		(i) Write properties of R. (ii) Sketch the graph of R. From the graph write portition	02
	(b)	(ii) Sketch the graph of R.From the graph, write partition1. Briefly discuss the following terms:i) modus ponesii) hypothetical syllogisms	on of R. 02 02
		2. Explain Isomorphic graphs with example.	04
		3. Write negation of following statement: This flower is not beautiful.	01
Q.2	(a) (b)	Prove that every cyclic group is abelian, but converse is not true. Define Equivalence Relation with example.	07 07
		OR	
	(b)	 Define Join Irreducible elements and Atoms with proper ex Define Meet Irreducible elements and Anti-atoms with proper 	-
Q.3	(a)	Define Complemented Lattice. Find the complement of $\langle S_{10}, I \rangle$	0>. 07
	(b)	Prove that $\langle S_{66}, D \rangle$.is a Boolean algebra.	07
Q.3	(a)	OR Define: Sub-Lattice. Show that S ₆ is sub lattice of lattice <s30.< td=""><td>, D>. 07</td></s30.<>	, D>. 07
Q.J	(b)	Find a minimal sum-of-product form using K-map (i) $\alpha(x, y, z) = xyz + xyz' + x'yz' + x'y'z$ (ii) $\alpha(x, y, z) = xyz + xyz' + xy'z + x'yz + x'y'z$	07
Q.4	(a)	Define poset. When is a poset said to be a lattice? Draw Hasse following posets and examine which of them are lattices. (a) $P(S)$, \Rightarrow where $S = \{a,b,c\}$ (b) $\{1,2,3,12,18\}$, $D >$ (c) $\{1,2,3,6\}$, $D >$ (d) $\{5,6,D >$.	diagrams of 07
	(b)	Give an indirect proof to show that if $n^2 + 3$ is odd, then n is every \mathbf{OR}	
Q.4	(a)	Draw Hasse diagram of following Posets. (1) (S ₆₀ ,D) (2) (S _{4 x} S ₃ ,D)	07
	(b)	For a Boolean Algebra $\langle B, *, \bigoplus ', 0, 1 \rangle$ prove that $(a \oplus b') *(b \oplus c') *(c \oplus a') = (a' \oplus b) *(b' \oplus c) *(c' \oplus a)$	07

Q.5	(a)	1. Prove without constructing the truth table that	02
		$\sim p \rightarrow (p \rightarrow q)$	
		2. Explain biimplication with example.	02
		3. Let $P(x,y)$ denote the sentence: $2x + y = 1$. What are the truth values of	03
		$\forall x \exists y P(x,y), \forall x \forall y P(x,y), \text{ and } \exists x \exists y P(x,y), \text{ where the domain of } x,y \text{ is the set of all integers?}$	
	(b)	(1) Define weakly connected, unilaterally connected and strongly connected Graphs.	03
		(2) Discuss directed tree with example.	04
		OR	
Q.5	(a)	Define diagraph, Cyclic graph and Null graph with example.	07
•	(b)	Define Node Base. Find the Node Base for the following graph.	07
