Seat No.:

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-I • EXAMINATION - WINTER • 2014

Subject Code: 2610003 Date: 30-12-2014 **Subject Name: Discrete Mathematics for Computer Science (DMCS)** Time: 10:30 am - 01:00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. **Q.1** (I) Given $S = \{1, 2, 3, 4, 5\}$ and a relation R on S where $R = \{(x, y)/x + y = 5\}$, 03 (a) What are the properties of the relation R? 04 (II) Let $X = \{1, 2, 3, 4\}$ and $R = \{(x, y) / x > y\}$ (i) Draw graph of R. (ii) Write its matrix. **(b)** (I) Define a group. Show that (I,+), where I is the set of integers and + is 03 Operation of usual addition, is a group. (II) Define a subgroup. Show that $\langle \{ [1], [4], [13], [16] \}, \times_{17} \rangle$ is a subgroup of 04 $\langle Z_{\scriptscriptstyle 17}^*, \times_{\scriptscriptstyle 17}^{} \rangle$ **Q.2** (a) (I) State whether following lattices are distributive as well as complemented or 03 not. Justify your answers. (i) (S_{16}, D) (ii) (S_{45}, D) 04 (II) Draw Hasse diagram of following Posets. (i) $(\rho(A), \subset)$ where $A = \{a, b, c\}$ (ii) (S_{36}, D) 04 (I) Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{(x, y)/x - y \text{ is divisible } 3\}$ Show that R is an equivalence relation. (II) Give an example of a set X such that $\langle \rho(X), \subseteq \rangle$ is a chain. 03 (b) (I) Given a set $S = \{1, 2, 3, 4, 5\}$. Find the equivalence relation on S, 03 which generates the partition $\{\{1,2\},\{3\},\{4,5\}\}$. 04 (II) Let $R = \{(1,2), (3,4), (2,2)\}$ and $S = \{(4,2), (2,5), (3,1), (1,3)\}$, Find $R \circ S$, $S \circ R$, $R \circ R$, $S \circ S$. (I) Determine the truth value of each of the following statements. 03 0.3 (i) 72 > 15 and 33 is a prime integer. (ii) 19 - 4 = 15 or today's temperature is below freezing. (iii) If Mickey is in Florida, then 17 is an odd integer. (II) Test the validity of the logical consequences: 04 All dogs fetch. Kitty does not fetch. Therefore Kitty is not a dog. 02 **(b)** (I) Define a cyclic group. Show that $(Z_6, +_6)$ is a cyclic group. 05 (II) Define (i) A group homomorphism (ii) A group isomorphism. Show that $(Z_4, +_4)$ is isomorphic to (Z_5^*, \times_5)

Q.3 (a) (I) Show by truth table that the following statement formula is a tautology: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

- (II) Test the validity of the logical consequences:
 - All men are mortal.

Randy is a man.

Therefore Randy is mortal.

(b) (I) Define an abelian group. Show that in a group (G,*), if for any

03

 $a,b \in G$, $(a*b)^2 = a^2*b^2$ then (G,*) must be abelian.

04

03

03

04

04

- (II) Define kernel of a group homomorphism. Show that the kernel of Homomorphism g is a subgroup of (G,*), where g is a homomorphism from (G,*) to (H,Δ) .
- 0.4 (I) Show that in a lattice (L, \leq) , for any $a, b \in L$, $a \leq b \Leftrightarrow a \oplus b = b$
 - 04 (II) Define a sublattice. Find all sublattices of (S_{10}, D)
 - (I) Show that the following Boolean expressions are equivalent. Obtain **(b)** their sum-of-products canonical form.
 - (i) $(x \oplus y) * (x' \oplus z) * (y \oplus z)$
 - $(ii) (x \oplus y) * (x' \oplus z)$
 - (II) Use the Quine McCluskey method to simplify the sum-of-products expression:

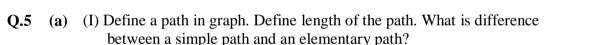
$$f(a, b, c, d) = \sum (10, 12, 13, 14, 15)$$

0.4 (I) Show that in a lattice (L, \leq) , for any $a, b \in L$, $a \leq b \Leftrightarrow a * b = a$

03

04

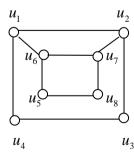
03

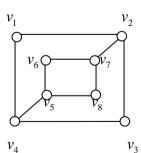

(II) Define a Boolean Algebra. Show that in a Boolean Algebra, $(a*b)'=a'\oplus b'$ and $(a\oplus b)'=a'*b'$

(I) Define (i) A join-irreducible element (ii) A meet-irreducible element in a Boolean Algebra. Write all join-irreducible elements and meet-irreducible

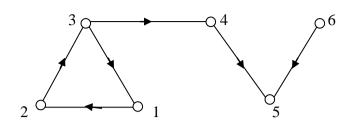
04

elements of (S_{30}, D) . (II) Use the Karnaugh map representation to find a minimal sum-of-products

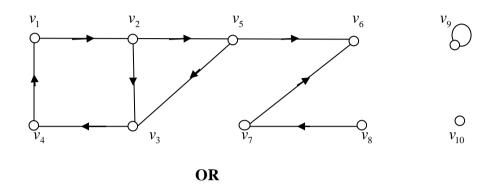

expression of following function. $f(a, b, c, d) = \sum_{i=1}^{n} (0, 1, 2, 3, 12, 14)$

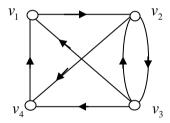


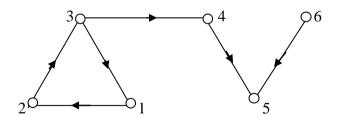
03


(II) Define isomorphic graphs. State whether the following graphs are isomorphic or not.

04




(b) (I) Define a strong component. Write strong components of the digraph given in following figure.


(II) Define a node base. Write node base of the digraph given in following digraph. **04**

Q.5 (a) (I) Define adjacency matrix of the digraph G. Write adjacency matrix of the following digraph.

(II) Define a unilateral component. Write unilateral components of the Graph given in following figure.

- **(b)** (I) Define a complete binary tree. What will be number of terminal nodes In a complete binary tree having 8 edges?
 - (II) Define (i) An m-ary tree.(ii) An ordered tree (iii) A positional m-ary

04

03

03

03