Subject Code: 2610003

Seat No.: _____ Enrolment No.____

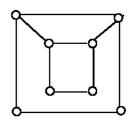
GUJARAT TECHNOLOGICAL UNIVERSITY

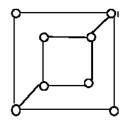
MCA - SEMESTER-I • EXAMINATION – WINTER • 2015

Subject Name: Discrete Mathematics for Computer Science			
Ti	ime: 1	0:30 am - 01:00 pm Total Marks: 70	
Ins	struction 1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary.	
Q.1	(a)	Let $X = \{1, 2, 3, 4\}$ and $R = \{(x, y)/x > y\}$ be relation on it. (i) Write properties of R (ii) Write matrix of R (iii) Draw graph of R	03 02 02
	(b)	 (I) Define a group. Let Z be set of integers. (i) Is (Z,+) a group? Justify your answer. (ii) Is (Z,×) a group? Justify your answer. (II) Define a cyclic group. Show that a cyclic group is always abelian. 	01 02 02 02
Q.2	(a)	(I) Define a partial order relation. Let A be a finite set and $\rho(A)$ be its power Set. Show that \subseteq (set inclusion) is a partial order relation on $\rho(A)$.	04
		(II) Define R - equivalence classes. Let I be the set of integers and R be the relation "congruence modulo 3". Determine the equivalence classes generated by the elements of I .	U.
	(b)	(I) Draw Hasse' Diagram of the following posets. (i) (S_{75}, D) (ii) (S_{27}, D)	04
		(II) Let $R = \{(1,2), (3,4), (2,2)\}$ and $S = \{(4,2), (2,5), (3,1), (1,3)\}$. Find $R \circ S$, $S \circ R$, and $R \circ R$	03
		OR	
	(b)	(I) In poset (S_{36}, D) , find (i) GLB X, LUB X (ii) GLB Y, LUB Y where $X = \{4, 6, 12\}$ and $Y = \{3, 6, 9\}$.	04
		(II) Write a short note on applications of relations to database theory.	
Q.3	(a)	 (I) Determine the truth value of each of the following statements. (i) 72 > 15 and 33 is a prime integer. (ii) If April is in America, then 10 is a prime integer. 	02
		 (ii) If Anil is in America, then 19 is a prime integer. (II) Write existential quantification of the sentence: "x is a prime integer, where, x is an odd integer." 	02
		Is this existential quantification a true statement? (III) Test the validity of the logical consequences: All dogs fetch. Ketty does not fetch. Therefore, Ketty is not a dog.	03
	(b)	(I) Define a subgroup. What is the relation between order of a subgroup and order of a finite group? Find all the subgroups of (Z_7^*, \times_7) .	04

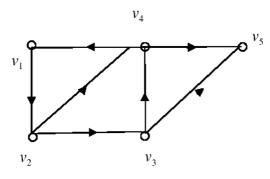
Date: 30-12-2015

(II) Define a left coset of a subgroup in a group. Find the left cosets of 03 $\{[0],[3]\}\$ in the group $(Z_6,+_6)$. OR (I) Determine the truth value of each of the following statements. Q.3 02 (a) (i) Today is Monday or 17 is an odd integer (ii) If 4+5=10, then $16\times16=512$ (II) Write universal quantification of the sentence: 02 " $x^2 + x$ is an even integer, where x is an even integer." Is this universal quantification a true statement? (III) Test the validity of the logical consequences: 03 Every integer is a rational number. 3 is an integer. Therefore, 3 is a rational number. 03 **(b)** (I) Define a subgroup. Find the subgroup of symmetric group S_4 generated by the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$. (II) Show that if a group (G,*) is of even order, then there must be an element 04 $a \in G$ such that $a \neq e$ and a * a = e. Q.4 (I) Define (i) A complemented lattice 04 (ii) A distributive lattice Give one illustration for each A bounded lattice which is complemented but not distributive. A bounded lattice which is distributive but not complemented. (ii) 03 (II) Show that in a complemented distributive lattice, $a \le b \iff b' \le a'$. (I) Define atoms and anti-atoms of a Boolean algebra. What is relation between **(b)** 03 Atoms and anti-atoms? Write atoms and anti-atoms of Boolean algebra $(\rho(S), \cap, \cup, \sim, \phi, S)$ where $S = \{a, b, c\}$ 04 (II) Use Karnaugh map representation to find a minimal sum-of-products expression of function $f(a,b,c,d) = \sum (0,2,6,7,8,9,13,15).$ (I) Show that De Morgan's laws hold true in a complemented, distributive 04 Q.4 (a) lattice. (II) Define a sublattice. Give any four sublattices of the lattice (S_{12}, D) . 03 03 **(b)** (I) Write the Boolean expression $x_1 * x_2$ in an equivalent sum - of- products Canonical form in three variables x_1, x_2 and x_3 . 04 (II) Use the Quine Mc Clusky method to simplify the sum-of-products expression $f(a,b,c,d) = \sum (0,2,4,6,8,10,12,14)$. (I) Define (i) The adjacency matrix of a graph G. 02 Q.5 (a) (ii) The path matrix of a graph G. (II) Define (i) A unilaterally connected graph. 02 (ii) A strongly connected graph. (III) Give a directed tree representation of the following formula. 03 $(v_0(v_1(v_2)(v_3(v_4)(v_5)))(v_6(v_7(v_8))(v_9)(v_{10}))).$ (I) Define isomorphic graphs. State whether the following digraphs are 04 **(b)** isomorphic or not. Justify your answer.





(II) Find the reachable sets of $\{v_1, v_4\}, \{v_4, v_5\}$ and $\{v_3\}$ for the digraph given Below.



OR

Q.5 (a) (I) Define node base of a simple digraph. Comment upon statements:

04

- (i) No node in the node base is reachable from another node in the node base
- (ii) Any node whose indegree is zero must be present in any node base.
- (iii) Any node that does not have indegree zero and does not lie on a cycle cannot be present in a node base.

03

- (II) Define a complete binary tree. Show that in a complete binary tree, the total number of edges is $2(n_i 1)$, where n_i is the number of terminal nodes.
- (b) (I) Define the adjacency matrix of a graph G. Write adjacency matrix for the Following cases.

03

- (i) G(V, E) where $V = \{v_1, v_2, ..., v_7\}$ and $E = \phi$.
- (ii) G(V, E) where $V = \{v_1, v_2, v_3, v_4, v_5\}$ and

$$E = \{(v_1, v_1), ((v_2, v_2), (v_3, v_3), (v_4, v_4), (v_5, v_5)\}.$$

(II) Define isomorphic graphs. What are the necessary conditions for two Graphs to be isomorphic? Are they sufficient also? Justify your answer.

04
