Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-I • EXAMINATION - SUMMER • 2014

	a .	MCA - SEMESTER-1 - EXAMINATION - SUMMER - 2014	
		ject Code: 2610004 Date: 20-06-2014	
		ject Name: Fundamentals of Computer Organization	
		e: 10:30 am - 01:00 pm Total Marks: 70	
	Insti	uctions:	
		 Attempt all questions. Make suitable assumptions wherever necessary. 	
		3. Figures to the right indicate full marks.	
Q.1	(a)	 Prepare a truth table for Boolean expression: (i) A(BC'+B'C) (ii) X+YZ' List out first 30 numbers of base 20 number system 	02 02
		 3. i) Convert (0.6875)₁₀ to binary. ii) Convert (1010.011)₂ to decimal. 	03
		iii) iv) Convert (A87) ₁₆ to its equivalent octal number	
	(b)	Perform the following operations:	
		1. 0001 – 1000 (Using 2's complement system).	01
		2. Explain Visual Display Unit.	04
		3 Convert following: $(252)_{10} = ()_2 = ()_{8} = ()_{16}$	02
Q.2	(a)	State the De Morgan's theorems and Explain. Which are the universal gates? Describe any one.	07
	(b)	List various types of printers and explain any one of them OR	07
	(b)	Write a short notes on basic components of a digital computers	07
Q-3	(a)	Explain RAM? Types of RAM? Which did you select? Why?	05
	(b)	Explain characteristics of memory system and explain memory hierarchy.	05
	(c)	Explain cache operation, principle of locality and cache hierarchy.	04
		OR	
Q-3	(a)	Write short notes on instruction cycle and execution cycle organization of control register.	05
	(b)	Explain ROM? Types of ROM? Explain their application.	05
	(c)	Explain with examples types of complements method's using binary numbers systems	04
Q.4	(a)	What is a Multiplexer? Explain 4-to-1 line multiplexer.	07
	(b)	What is Flip-Flop? Explain how a JK Flip Flop is made from an RS Flip Flop. OR	07
Q-4	(a)	Explain RS Flip Flop by giving its characteristic table and the circuit diagram.	04
	(b)	Explain the working of Half-Adder and Full-Adder along with the circuit diagrams.	06
	(c)	What is the purpose of Binary Counter? Explain ripple counter.	04
Q.5	(a)	Draw the block diagram of 8086 Intel microprocessor and explain queue and segment registers.	07
	(b)	Explain instruction format of 8086 microprocessor. OR	07
Q-5	(a)	a) What do you mean by Addressing Techniques? Explain the direct, relative and	07
		indexed addressing techniques with an example.	
	(b)	b) Define following terms: instruction word, instruction cycle, instruction counter, op-code register	07