GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER- 1 EXAMINATION - WINTER 2018

Subject Code: 2610004 Date: 08-01-2019

Subject Name: Fundamentals of Computer Organization

Time: 10.30 am to 1.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Do as Directed.

07

- (1) "CPU is brain of Computer" Justify.
- (2) State truth table for NOR gate.
- (3) State major components of a typical digital computer.
- (4) What is the Base of Binary number system and Hexadecimal Number system?
- $(5) (1010100.01)_2 (110000.10)_2 =$ _____
- (6) Derive dual of $X \cdot (X' + Y) = X \cdot Y$
- (7) State difference between RAM and ROM.
- **(b)** Write a short note on following:

07

- (1) Scanner
- (2) RS flip flop
- Q.2 (a) Do as Directed.

07

- (1) Convert (ACD1)₁₆ into Octal Number. Specify the steps you use for conversion.
- (2) $(10001)_2 (11100)_2$ using 1's compliment method.
- (3) What is Karnaugh map?
- (4) Convert decimal Number (201) into Octal number.
- (5) How can you use complement to represent a negative number? Give an example.
- (6) Perform: 209.7 181.2 using 9's complement method.
- (7) Convert (101101111010)₂ to its equivalent hexadecimal number.
- **(b)** Explain Indirect and Relative Addressing mode with suitable example.

07

07

OR

(b) Explain working of 3-bit counter.

07

- Q.3 (a) Write a Boolean expression SOP form for a 3-input A,B,C gating network that will have outputs 1 for designation m0, m1, m3, m6 and m7 and the outputs are 0 for designation m2, m4 and m5. Draw two level NAND to NAND gate combination network for SOP that corresponds to the simplified expression.
 - **(b)** Explain design of Full Adder.

07

07

OR

- Q.3 (a) What is Flip-Flop? Explain how a JK Flip Flop is made from an RS Flip Flop. 07
 - (b) What is universal gate? Which gates are known as universal gate? Explain with Reason, use any one such gate as universal gate.
- **Q.4** (a) What is a Multiplexer? Explain 4-to-1 line multiplexer.

07

	(b)	What is Bus? Explain Address Bus, Data Bus and Control Bus.	07
		OR	
Q.4	(a)	Explain Direct and Indexed Addressing mode with suitable example.	07
	(b)	What is Cache memory and Virtual memory? Explain in detail.	07
Q.5	(a)	Describe zero-address and two-address instruction word formats.	07
	(b)	Explain working of ADD, SUB and NOT instructions with example.	07
		OR	
Q.5	(a)	Explain Instruction and Execution Cycle.	07
	(b)	Explain instruction format of 8086 microprocessor.	07
