GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER- II EXAMINATIONS - SUMMER 2016

Subject Code: 2620004 Date: 30-05-2016

Subject Name: Computer Oriented Numerical Methods

Time: 10.30a.m. To 01.00p.m. Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Intermediate calculation steps and results are to be shown, even while using the calculator.
- Q.1 (a) Give the graphical representation of the Fixed-Point Iteration method to find the root of the equation f(x)=0, for the cases of convergence as well as divergence.
 - (b) (1) Using Power method, determine the largest eigen value of the following 04 matrix:

$$\begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix}$$

- (2) Define the following terms: Absolute Error, Relative Error, and Blunders. 03
- Q.2 (a) Use Bisection method to find the root of the equation $x^3 5x + 1 = 0$, in the or interval [2,3], correct upto three decimal places.
 - (b) Find the root of the following equation correct upto three decimal places using Newton-Raphson method: $x^3 4x^2 + 3x + 1 = 0$.

OR

- (b) Find the root of the following equation correct upto three decimal places using Birge-Vieta method: $x^4 + 24x 50 = 0$, (take $r_0 = 1.5$). Perform only three iterations.
- Q.3 (a) The following data gives the melting point of an alloy of lead and zinc, where t is the temperature in °C and p is the % of lead in the alloy.

p :	40	50	60	70	80	90				
t:	184	204	226	250	276	304				

Using Newton's appropriate interpolation formula, find the melting point of the alloy containing 42% lead.

(b) Derive an expression for Newton's backward difference interpolation formula.

OR

Q.3 (a) From the following data, find the value of y at x = 0.5, using Lagrange's 07 interpolation formula.

X	:	-2	-1	2	3
у	:	-12	-8	3	5

(b) Fit a second degree parabola of the form $y = ax^2 + bx + c$ to the following data by the method of least squares

- 1···										
	x:	1	2	3	4	5				
	y:	5	12	26	60	97				

P.T.O.

07

Q.4	(a)	From	the	data	, find nume	rically the f	first and sec	ond order d	lerivatives a	at $x = 1$.3.	07
			X		0.5	0.7	0.9	1.1	1.3	1.5		

	У	<i>'</i> :	1.48	1.64	1.78	1.89	1.96	2.00	
)	Evaluat	te \int_{-6}^{1}	$\frac{dx}{}$ using ty	wo-point Ga	auss Ouadra	nture formu	la.		07

(b)

OR

8										
x:	1.0	1.2	1.4	1.6	1.8	2.0				
y:	0	0.128	0.544	1.296	2.432	4.000				

find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at x = 1.1.

- **(b) 07** Evaluate the following integral $\int_{0}^{6} \frac{1}{4x+5} dx$ using Simpson's $\frac{1}{3}$ rd and $\frac{3}{8}$ th rule, with 12 intervals.
- **Q.5** What is pivotal condensation? Solve the following system of simultaneous **07** (a) linear equations using Gauss Elimination method.

$$x + y + 2z = 4$$

 $3x + y - 3z = -4$
 $2x - 3y - 5z = -5$

Solve the following differential equation $\frac{dy}{dx} = x - 2y$, y(0) = 1, using Runge-**07 (b)** Kutta 4^{th} order method to find y(0.1) and y(0.2).

Solve the following system of simultaneous linear equations using Gauss-Seidel Q.5 07 (a) method:

$$5x - 2y + z = -4$$

 $3x + y + 5z = 13$
 $x + 6y - 2z = -1$

07 (b) Given the following differential equation $\frac{dy}{dx} = x^2 + x^4y$, with y(0) = 3 and starting values y(0.1) = 3.0050, y(0.2) = 3.0202 and y(0.3) = 3.0465. Find y(0.4)using Adam–Bashforth–Moulton's predictor–corrector method.

07