Seat	N_0 .	
Scat	110	

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY MCA-SEMESTER-II EXAMINATION-SUMMER-2019

Subject Code: 2620004 Date: 20-05-2019

Subject Name: Computer-Oriented Numerical Methods

Time:10.30 am to 1.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) Answer the following

07

- 1. Differentiate between Accuracy & Precision
- 2. Explain the following terms:

Blunders, Formulation, Errors, Data Uncertainty

- 3. Consider the Following equation $f(x) = x^9 8x^3 + 7x 9 = 0$, find positive root using Discarte's rule of sign
- 4. Find Relative error if 2/3 is Approximate to 0.667
- 5. Give name of iterative method.
- 6. Round-off following numbers to three significant digits. (a) 48.3668 (b) 9.3265 (c) 8.4155
- 7. Explain Significant figures with Examples.
- (b) Determine the root of the equation x³-4x+9=0 correct upto three decimal places using Bisection method using root between 2 & 3
- Q.2 (a) Determine the root of the equation x⁴-x-10=0 correct upto three decimal places 07 using Bisection method
 - (b) Find the root of the equation $x^3+2x^2+10x-20=0$ correct upto three decimal places using Birge-Vieta method(Hint: Take $r_0=1$)

ΩR

- (b) Determine the root of the equation $x^4-4x+1=0$ correct upto three decimal places using False Position method
- Q.3 (a) Use appropriate Newton's interpolation formula to find the value of y at x = 51.5, from the following tabular values:

 X
 41
 45
 49
 53
 57

 Y
 3.4482
 3.5569
 3.3593
 3.7563
 3.8485

(b) The results of measurement of electric resistance R of a copper bar at various temperatures t°C are given below:

temperature to the given outs.								
t	19	25	30	36	40	45	50	
R	76	77	79	80	82	83	85	

Fit a straight line R = a + bt.

OR

0.3 (a) Explain Bisection method with suitable graph

(b) Using Langrange's interpolation, find f(0)when the data are given in the following Table

X	-1	-2	2	4
Y	-1	-9	11	69

07

07

07

(a) Find the Eigen values and corresponding Eigen Vector of the

e Eigen vara	Co carro	COII	ospon
	Г 1	1	1]
Matrix A =	-1	- 3	-3
	2	4	4

(b) Explain the pitfalls of Gauss-Elimination method for solving a system of 07 simultaneous linear equations. Hence, solve the following system of equations, using Gauss-Elimination method.

$$2x + y + z = 10$$

 $3x + 2y + 3z = 18$
 $x + 4y + 9z = 16$

OR

(a) Using graph explain false position Method Q.4

07 The velocity V of a particle at distances from a point on its linear path is given below

07	
	07

07

S(m)	0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0
V(m/s)	16	19	21	22	20	17	13	11	9

Estimate the time taken by the particle to traverse the distance of 20 meters, using Simpson's 1/3 Rule

- Q.5 (a) Apply Runge-Kutta method to find approximate value of y for x=0.2, in steps of 07 0.1,if $dy/dx=x+y^2$, given that y=1 where x=0
 - if $A = \begin{bmatrix} 1 & 1 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ Verify that $(AB)^T = B^TA^T$ where $(T)^T$ indicates Transpose 07

Q.5 (a) Define any six type of matrix with example.

07 **(b)** Use Euler's method to solve the following differential equation 07 $\frac{dy}{dx} = \frac{4x}{y} - xy$ with y(0)=3, in the interval [0,1] taking step size h=0.2
