GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-1 EXAMINATION - WINTER 2018

Subject Code: 2620004 Date: 05-01-2019

Subject Name: Computer-Oriented Numerical Methods

Time: 02.30 pm to 5.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) 1. List two bracketing and open methods.
 - 2. Use Descartes' rule of signs to the following equation to determine positive and negative roots.

 $F(x) = 2x^4 - 3x^3 - 6x^2 + 6x - 1 = 0$

- 3. What is inverse interpolation? List methods of inverse interpolation. **02**
- 4. When Newton's forward difference interpolation method is used?
- (b) Define error. Explain the types of errors with example. 07
- Q.2 (a) Find a root of the equation $x^3 x 11 = 0$, using bisection method up to fourth approximation.
 - (b) Find the root of $x^3 + 2x^2 + 10x 20 = 0$ correct up to three significant digits using Birge Vieta Method. (Hint: Take $r_0=1$)

OR

- (b) What are the similarities and differences between Secant Method & False Position method of finding a root of a given equation f(x) = 0?
- Q.3 (a) Apply Lagrange's inverse interpolation formula to obtain the value of x when y = 6 from the given table.

X:	168	120	72	63
Y:	3	7	9	10

(b) For the following data, interpolate at x = 21 and x = 28 by suitable Newton's **07** interpolation formula.

X:	20	23	26	29
Y:	0.3420	0.3907	0.4384	0.4848

OR

Q.3 (a) By the method of least squares, find the best fitting straight line to the data given below.

X:	5	10	15	20	25
Y:	16	19	23	26	30

- (b) Express Maclaurin series expansion of $f(x) = e^{-x}$ in terms of chebyshev 07 polynomials.
- **Q.4** (a) Given that, 07

X:	1	1.1	1.2	1.3	1.4	1.5	1.6
Y:	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find dy/dx and d^2y/d^2x at x=1.1

(b) Dividing the range into 10 equal parts, find the approximate value of $\int_0^{\pi} \sin x . dx$

by trapezoidal rule.

OR

Q.4 (a) Find f' (5) from the following table using Newton's Divided Difference formula. **07**

X:	0	2	3	4	7	9
Y:	4	26	58	112	466	922

02

- (b) Find the value from $\int_0^1 \frac{x^2}{1 + x^3} dx$ using Simpson's 1/3 rule with h= 0.25
- Q.5 (a) Solve the system using gauss elimination method. 3X + Y Z = 32X 8Y + Z = -5X 2Y + 9Z = 8
 - (b) Find Eigen value, Eigen vector of the matrix

 -3 -7 -5

 2 4 3

 1 2 2

 OR
- **Q.5** (a) Given dy/dx = y x, y(0) = 2. Find y(0.1), y(0.2) correct to four decimal places using R.K. 2^{nd} order method.
 - (b) Given y' = 1/(x+y), y(0) = 2, y(0.2) = 2.0933, y(0.4) = 2.1755, y(0.6) = 2.2493. **07** Find y(0.8) by Milne's Predictor Corrector method.
