Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-II • EXAMINATION - SUMMER • 2014

Subject Code: 620005 Date: 24-06-2014

Subject Name: Computer Oriented Numerical Methods

Time: 10:30 am - 01:00 pm **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 07 **Q.1** (a) What are the sources of errors? Explain any two in detail.
 - **(b)** Discuss characteristics of numerical computation with example(s).

(a) Use Newton-Raphson method to find a real root of the equation $x^3 - 2x - 5 = 0$ correct 07 **Q.2** to three decimal places.

Use Bisection method in maximum six stages to find a real root of the equation f(x) =**(b)** 07 $\cos x - x e^x = 0.$

- (b) Use Bisection method in four stages to find a real root of the equation $f(x) = x \log_{10x} 07$ 102 = 0.
- Q.3 (a) Evaluate the values of f(2) and f(6.3) using Lagrangian interpolation formula for the 07 table of values given below.

X	1.2	2.5	4	5.1	6	6.5
f(x)	6.84	14.25	27	39.21	51	58.25

(b) Compute the value of f(7.5), by using suitable interpolation on the following table of 07data.

X	3	4	5	6	7	8
f(x)	28	65	126	217	344	513

OR

Q.3 (a) Use the method of least square approximation to fit a straight line to the following 07 observed data.

Xi	60	61	62	63	64
Yi	40	40	48	52	55

(b) The following table of x and y is given

X	1	2	3	4
У	1.5	2.2	3.1	4.3

Use cubic spline interpolation to compute y(1.2) and y'(1).

Show that the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, satisfies the $\mathbf{Q.4}$ (a) 07

Matrix equation $A^2 - 4A - 5I = 0$. Hence find A^{-1} .

Solve the system of equations

$$x1 + x2 + x3 = 6$$

$$2x1 + x2 + 3x3 = 13$$

$$3x1 + 3x2 + 4x3 = 20$$

by the Gauss elimination method.

07

07

07

Q.4 (a) The population of a city is given in the following table. Find the rate of growth in population in the year 2001 and in 1995.

Year x	1961	1971	1981	1991	2001
Population y	40.62	60.80	79.95	103.56	132.65

(b) $\begin{array}{c}
1 \\
\text{Evaluate } \int \mathbf{e}^{-x^2} dx, \text{ using} \\
0
\end{array}$

07

- (1) Simpson's one-third rule with 10 sub-intervals and
- (2) Trapezoidal rule.

Q.5 (a) Compute the largest Eigen value and the corresponding

07

Eigenvector of the matrix

 $\begin{bmatrix}
 1 & 3 & -1 \\
 3 & 2 & 4 \\
 -1 & 4 & 10
 \end{bmatrix}$ by power

Method correct to two decimal digits.

(b) Given $xy = x - y^2$, y(2) = 1, evaluate y(2.1), y(2.2) and y(2.3) correct to four decimal **07** places using Taylor series method.

OR

- **Q.5** (a) Compute values of y(0.1) and y(0.2) by 4^{th} order Runge-Kutta method, correct to five **07** significant figures for the initial value problem. dy/dx = x + y, y(0) = 1.
 - (b) For the initial value problem, dy/dx = xy + 1, y(0) = 1, y(0.1) = 1.1053, y(0.2) = 07 1.22288, y(0.3) = 1.35526. Compute y(0.4) using Milne's predictor-corrector method.
