Seat No.: _____ Enrolment No.____

GILIARAT TECHNOLOGICAL UNIVERSITY

		MCA - SEMESTER-II • EXAMINATION – SUMMER • 2014	
		abject Code: 620001 Date: 13-06-2014	
	Ti	ibject Name: Data Structures ime: 10:30 am - 01:00 pm	
		3. Figures to the right indicate full marks.	
Q.1	(a)	 Do as Directed Which is the best sorting method in worst case? What is the prerequisite of binary search? What is difference between depth and height of the tree? What is articulation point in Graph? Insertion and deletion are easy in linked list as compare to array. State true or false. What will be the address of the element a(i, j) in an array, where data is stored as column major with m rows and n columns. Name any two notations used for representing the complexity of an algorithm.)7
	(b)	Write an algorithm to convert infix expression into reverse polished notation and convert the following infix expression into prefix expression. $A+B*C/E^{\wedge}(F-G)*(H+K)$)7
Q.2	(a) (b))7)7
	(b)	OR Write an algorithm of avials sort	7
	(b)	Write an algorithm of quick sort.)7
Q.3	(a)	\mathcal{E})7)4
		2. Write an iterative algorithm to traverse a binary tree in inorder traversal.)3
	(b)	Graph.)7
Q.3	(a)	OR Write an algorithm to add two one variable polynomials.)7
	(b)	Answer the following:-)7)4
)3
Q.4	(a)	Construct a 3-way B-tree by inserting the following elements in the given order. 10, 30,)7

20, 27, 15, 108, 99, 81, 40,50,60,70.

(b) What is the significance of circular queue? Write an algorithm to insert and delete an 07 element from the circular queue.

OR

Q.4	(a)	Construct an AVL tree by inserting the following elements in the given order. 15, 35, 23, 25, 12, 138, 90, 84, 41,56,66,73.	07
Q.4	(b)		07
Q.5	(a)	Answer the following	07
	,	 Explain the Trie structure and its types in detail by giving suitable example. Write short note threaded binary tree. 	04
		2. The short host through chair week	03
	(b)	Explain Dijkstra's algorithm by giving suitable example	07
		OR	
Q.5	(a)	Answer the following	07
		1. Write an algorithm to insert and delete an element from doubly linked list.	04
		2. Explain KWIC indexing with suitable example.	
			03
	(b)	Explain Prims's algorithm by giving suitable example	07
