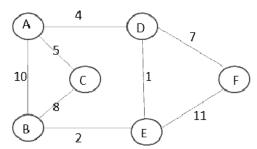

Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-II - EXAMINATION - WINTER 2015

Subje	ct N	Code: 620001 Date:30/11/2015 ame: Data Structures	
Time	tions		
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q. 1	Do (1) (2) (3) (4) (5) (6) (7)	Define: Leaf node and Degree. Discuss hash function with suitable example.	[14]
Q. 2	A B	Discuss algorithm efficiency of selection sort with best, worst and average case. 1) Array[-2:7] is array of integer with row major array. Calculate total memory occupied by it. Also find address of [-1,4] th element. Assume the base address is 100.	[07] [04]
		2) Explain sparse matrix and its array representation. OR	[03]
	A	Explain basic idea of two way merge sort. Show tracing for the following data 25, 15, 40, 60, 18, 28, 16, 70, 30	[07]
	В	 Write algorithm to delete first node from single link list. List various types of queue and write its applications. 	[04] [03]
Q. 3	A	Explain binary search technique with suitable examples. How this technique is better than sequential search technique? Explain how this technique is used to create binary search tree.	[07]
	В	 Explain push and pop operation for stack with algorithms. Also explain overflow and underflow situations. Write algorithm for insertion operation into circular queue with handling of overflow situation. 	[04] [03]
		OR	
	A	Define heap. Demonstrate construction of min heap after insertion of each of the following values: 25, 33, 23, 30, 35, 24	[07]
	В	 Write algorithm to insert node at front end of single link list. Write algorithm for traversing of double link list in reverse direction. 	[04] [03]


Q.4 A List various traversing methods for binary search tree. Write recursive algorithm [07] to traverse Binary search tree in inorder. Give inorder and preorder traversal of following binary tree.

B Write algorithm to calculate path matrix from given adjacency matrix. Define minimum spanning tree and spanning tree. Discuss any one method of finding minimum spanning tree.

OR

A Show tracing for creation of minimum spanning tree for following graph using [07] Krushkal's algorithm.

- B Show tracing for conversion of following infix expression to suffix expression using stack. (a+b)*(c-d)/e [07]
- Q. 5 A Define the characteristics of B-tree. Demonstrate construction of B-tree of order 3 by inserting each of the following data: 12, 15, 7, 10,18, 25, 14, 11, 18, 26, 20, 15, 22, 4 and 19
 - **B** Explain m ary tree, trie structure and hash table with suitable examples. [07]

OR

- A Show all passes of quick sort for ascending order sorting of following data: 33, 49, 89, 15, 29, 16, 41, 18. Also write rules of partition for the sorting.
- **B** What do you mean by collision? List various techniques of collision resolutions. [07] Discuss any one in detail.