Seat No.: _____ Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA Integrated - SEMESTER-II • EXAMINATION - SUMMER • 2015

Subject Code: 4420601 Date: 28-05-2015

Subject Name: Discrete Mathematics for Computer Science

Time: 10:30 am - 01:00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define poset. When is a poset said to be a lattice? Draw Hasse diagrams of following posets and examine which of them are lattices.
 - $(a) < P(S), \subseteq >, S = \{a, b, c\}$
 - (b) <{1, 2, 3, 12, 18}, D >
 - $(c) < \{1, 2, 3, 6\}, D >$
 - $(d) < S_{16}, D >$.
 - (b) Define: Boolean Algebra. Find all Sub Boolean Algebra of Boolean Algebra <S₃₀, , V, ;0,1 >.
- Q.2 (a) (1) Draw Hasse- diagram for the following:

04

- $i) < S_{105}, D >$
- ii) $< S_{70}D >$
- (2) With proper justification give an example of

- 03
- a) A bounded lattice which is complemented but not distributive.
- b) A bounded lattice which is distributive but not complemented.
- c) A bounded lattice which is both distributive and complemented.
- (b) Define:

07

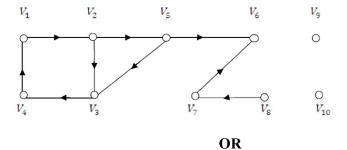
i) Join irreducible elements.ii) Atoms of a Boolean algebra.

Determine Join-irreducible elements and atoms of following Boolean algebra also draw the Hasse Diagram:

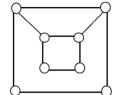
- i) (S_{210}, D)
- ii) $\langle P(S), , \cup, ', , S \rangle$ where $S = \{a, b, c\}$

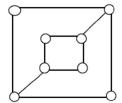
OR

- (b) Define Lower bound and Upper bound. Let P = < 3, 5, 9, 15, 24, 45}, D> be a poset. Draw the Hasse diagram. Find
 - i) maximal element. & minimal element.
 - ii) the greatest and least element.
 - iii) the lower bounds of $\{3, 5\}$, if any & the upper bound of $\{9, 15\}$, if any
 - iv) GLB of {15, 45} & LUB of {3, 9, 15}.
- Q.3 (a) Show that the lattice $< S_n$, D > for n=100 is Isomorphic to the direct product of lattice for n=4 & n=25.


(b) Use the Quine-McCluskey algorithm to find the prime implicants of the expression: $f(a, b, c, d) = \hat{U}(0, 1, 4, 5, 9, 11)$. Also obtain a minimal expression for the same.

OR


- Q.3 (a) Use K-map to find a minimal SOP expression for the function given by \hat{U} (0,1,2,3,6,7,13,14) in four variables w,x,y,z.
 - (b) (1) Explain Stone representation theorem by giving a suitable example. 03
 - (2) Obtain the sum-of-products canonical form of the following Boolean expressions:
 - i) $(x1 \oplus x2) \oplus (x1 * x3)$
 - ii) $(x1 * x2) \oplus x3$
- **Q.4** (a) (1) Define Sub-lattice. Write any four sublattices of (S_{12}, D) .
 - (2) Describe the application of Boolean algebra to Relational Database. **04**
 - (b) (1) Show that in a group < G, * > if for any a, b ∈ G, $(a * b)^2 = a^2 * b^2$, then < G, * > must be abelian.
 - (2) Show that $< \{1,4,13,16\}, x_{17} > \text{is a subgroup of } < Z_{17}^*, x_{17} >.$


OR

- Q.4 (a) Show that the set of all positive rational number forms an abelian group under the composition defined by a * b = ab/2.
 - (b) Define Cyclic Group. Prove that $\langle Z_7^*, x_7 \rangle$ is a group. Also find generators of this group.
- Q.5 (a) Define: Forest, Binary Tree, Node Base, Cycle, Elementary Path, Isolated Node, Graph.
 - (b) Define node base of a simple digraph. Find reachablility set of all nodes for the following diagraph.

Q.5 (a) Define: Isomorphic Graph, Sling and Weighted Graph. State weather the following digraphs are isomorphic or not:

04

(b) Define: Directed tree and its leaf. Draw the graph of the tree represented by (A(B(C(D)(E)))(F(G)(H)(J))(K(L)(M)(N(P)(Q(R))))). Obtain the binary tree corresponding to it.
