Enrolment No. Seat No.: ____

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-II • EXAMINATION - SUMMER • 2014

Subject Code: 620007 Date: 21-06-2014

Subject Name: Theory of Computation

Time: 10:30 am - 01:00 pm **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Write the regular expressions corresponding to each of the following:

07

- 1. Strings of even length
- 2. Strings with odd number of 1's
- 3. Strings of length 3 or less
- 4. Strings that are valid C identifies
- 5. Strings ending in 11
- 6. Strings containing exactly two 0's
- 7. Stings ending in 01
- **(b)** (i) Define regular language, \sum^* , L^* , L^+

03

04

(ii) Explain Logical Quantifiers and Quantified Statement

- **Q.2** (a) Explain principle of mathematical induction. Solve the following: Prove that for every n 07 ≥ 0 ,

 $\sum_{i=1}^{k} i^2 = k(k+1)(2k+1)/6.$

- Define NFA with suitable example in details. Also differentiate NFA and DFA **(b)** i. 04
 - Prove that if either of a and b is even number then a*b is even number. ii.

03

OR

- (b) Explain NFA-\(\triangle\). What are different the kinds of non-determinism possible in NFA-\(\triangle\)? **07** Also define ∧ closure.
- An NFA with states 1-5 and input alphabet {a,b} has the following transition table: Q.3 07

q	$\delta(q,a)$	$\delta(q,b)$
1	{1,2}	{1}
2	{3}	{3}
3	{4}	{4}
4	{5}	ф
5	ф	{5}

- i. Calculate $\delta^*(1, ab)$
- ii. Calculate δ *(1, abaab)
- **(b)** Construct FA for the following regular expressions:

07

- (11 + 10)*i.
- (111 + 100)*0ii.

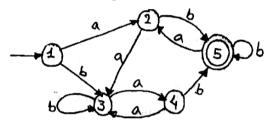
OR

Q.3 (a) A transition table is given for an NFA-\(\triangle\) with seven states

q	$\delta(q,a)$	$\delta(q,b)$	$\delta(q, \wedge)$
1	ф	ф	{2}
2	{3}	ф	{5}
3	ф	{4}	ф
4	{4}	ф	{1}
5	ф	{6,7}	ф
6	{5}	ф	ф
7	ф	ф	{1}

Find the following:

i.
$$\delta*(1, ba)$$


ii.
$$\delta$$
*(1, ababa)

(b) Construct FA for the following regular expressions:

i.
$$(0+1)*0$$

ii.
$$(0+1)*(1+00)(0+1)*$$

Q.4 (a) Find minimum state FA for the following:


(b) Given that $L1 = \{x \in (0,1)^* \mid x \text{ ends with } 00\}$

$$L2 = \{x \in (0,1)^* \mid x \text{ ends with } 01\}$$

Give FA for L1, L2 and L1 \cap L2

OR

Q.4 (a) For the given NFA- \land find the minimum state FA:

Q.4 (b) Given that $L1 = \{x \in (0,1)^* \mid x \text{ ends with } 00\}$

$$L2 = \{x \in (0,1)^* \mid x \text{ ends with } 01\}$$

Give FA for L1, L2 and L1 – L2

Q.5 (a) Write a short note on turing machines. Support with an example

(b) Define PDA. Give a suitable example for the same.

07 07

07

07

07

07

07

07

OR

Q.5	(a)	Convert the following grammar into Chomsky normal form	07
		$S \rightarrow AACD$	
		$A \rightarrow aAb \mid \land$	
		$C \rightarrow aC \mid a$	
		$D \rightarrow aDa \mid bDb \mid \land$	
(b)	Write short notes on:		
		i. Pumping lemma	03
		ii. Recursively enumerable languages	04
