Seat No.:

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-III EXAMINATION - WINTER 2018

Subject Code: 3630001 Date: 04-01-2019

Subject Name: Basic Mathematics

Time: 10.30 am to 1.00 pm **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (a) Define the following 0.1
 - 07
 - (1) Intersection of two sets
 - (2) Transpose of a matrix
 - (3) Power Set
 - (4) Modus pones
 - (5) Posets
 - (6) Binary Tree
 - **(b)** Let $U = \{a,b,c,d,e,f,g,h,p,q,r\}$

07

 $A = \{a,b,c,d,e\}$

 $B = \{c,d,e,f,g,h\}$

 $C = \{h,p,q,r\}$

Compute, $A \cup B$, $B \cap C \cap A$, $A \cdot (B \cup C)$, $(A \cup B)'$, A', $A' \cap B'$, $A \triangle B$, using Venn

Diagram. (Note: $A\Delta B = (A-B) \cup (B-A)$

Q.2 Show the following implication without constructing truth table and thereafter **07** show it through the truth tables

$$(P \rightarrow Q) \rightarrow Q \Leftrightarrow (P V Q)$$

(b) (1) Express the following using predicates, quantifiers and logical connectives. 03 Also verify the validity of consequence

All birds can fly

A sparrow is a bird

Therefore, a sparrow can fly.

(2) Prove by contradiction that $\sqrt{2}$ is an irrational number

(b) Define Relation . Let $X = \{1,2,3,4\}$ and $R = \{\langle x,y \rangle \mid x \rangle y \}$. Draw the graph of R **07** and also give its matrix.

OR

- What is Recursive Function? Write a Recursive algorithm to find out 07 **Q.3** (a) Fibonacci series.
 - Draw the Hasse diagrams of the following sets under the partial ordering **07 (b)** relation "divides" and indicate those which are totally ordered. (i) {1,2,3,4} (ii) {3,5,15} (iii) {2,4,8,16} (iv) {1,2,3,6,12} (v) {2,3,6,12,24,36}

OR

- Q.3 (a) Let $X = \{2,3,6,12,24,36\}$ and the relation \leq be such that $x \leq y$ if x divides y. draw **07** the Hasse Diagram of $\langle x, \leq \rangle$.
 - (b) Let $X = \{bat, bed, dog, let, egg\}$ and let the relation R be given as: $R = \{\langle x, y \rangle \mid x \in X\}$ 07 x,y

 $\in X \land xRy$, if x and y contain some common letters.}

Identify a relation. Draw a graph for R and find maximal compatibility block for

the same.

04

- Q.4 (a) Explain with example injective (onto), surjective(one-to-one) and bijective(one-to-one onto) function. Let N be set of Natural numbers including zero.
 Determine whether the function given below is injective, surjective or bijective.
 f: N→N f(j) = j2+2
 - (b) Define equivalence relation.
 Let Z be the set of integers and R be the relation called "Congruence modulo 5" defined by $R = \{ \langle x, y \rangle \mid (x y) \text{ is divisible by 5} \}$ Show that R is an equivalence relation. Determine the equivalence classes generated by the elements of Z.

OR


Q.4 (a) Define Composition of a function. Let $X = \{1,2,3\}$ and p,q,r and s be functions from X to X given by $p = \{<1,2>,<2,3>,<3,1>\}$ $q = \{<1,2>,<2,1>,<3,3>\}$

Find oq, qop, poroq, soq, qos, sos

(b) Find the inverse of the matrix

 $A = \begin{pmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$

- Q.5 (a) Define Tree. Draw a graph of tree represented by : (A(B(C(D)(E))(F(G)(H(J))))(K(L)(M(N)(P(Q)(R))))) Obtain a binary tree corresponding to it.
 - (b) Define adjacency matrix of a digraph. Obtain the adjacency matrix A of the given digraph. Find the elementary paths of lengths 1 and 2 from v₁ to v₄.

OR

- Q.5 (a) Give an abstract definition of graph. When are two simple graphs said to be isomorphic? Give an example of two simple digraphs having 4 nodes and 4 edges which are not isomorphic
 - (b) Define a unilateral component and strong component. Write unilateral and strong and weak components of the Graph given in following figure.

07

07