GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-III EXAMINATION - WINTER 2018

Subject Code: 4639301 Date: 02-01-2019

Subject Name: Basic Mathematics

Time: 10.30 am to 1.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Give definition of the following terms:

07

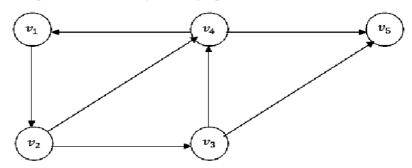
- 1) Singleton set
- 2) Intersection of two sets
- 3) Transpose of a Matrix
- 4) Existential Quantifiers
- 5) Symmetric Relation
- 6) Complete Graph
- 7) Pendent vertex
- **(b)** (1) For $A = \{2, 3, 4, 5, 6\}$, $B = \{3, 4, 5, 6, 7\}$, $C = \{4, 5, 6, 7, 8\}$ find **07**
 - a) $(A \cup B) \cap (A \cup C)$ b) $(A \cap B) \cup (A \cap C)$
 - (2) If $A=\{2,3\}$ $B=\{3,4\}$ $C=\{2,4\}$
 - Find (i) (A X B) U (A X C)
 - (ii) $(A \times B) \cap (A \times C)$
- **Q.2** (a) $(p \rightarrow (q \lor r)) \land ((q \rightarrow p) \land (p \lor r))$ prepare the truth table. 07
 - (b) Test the validity of the logical consequences:All dogs fetch.

Ketty does not fetch.

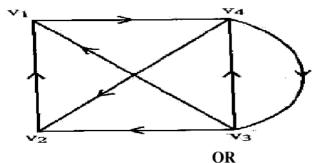
Therefore, Ketty is not a dog

OR

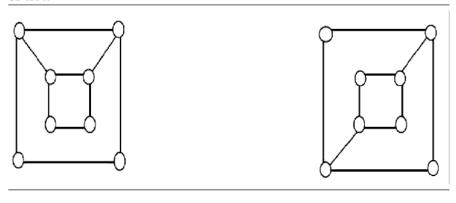
- (b) In a competition, a school awarded medals in different categories. 36 medals in dance, 12 medals in dramatics and 18 medals in music. If these medals went to a total of 45 persons and only 4 persons got medals in all the three categories, how many received medals in exactly two of these categories?
- Q.3 (a) Explain contradiction method and using it prove that $\sqrt{6}$ is an irrational number.
 - (b) Compute, $A \lor B$, $A \land B$, A^T, B^T, AB $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$


OR

- Q.3 (a) Let $X = \{1,2,3,4,5\}$ R= $\{\langle x,y \rangle \mid x \text{ is divisible by } y\}$. Draw a graph of R and also give its matrix. Check whether the given relation an equivalence relation?
 - (b) $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 \frac{1}{2^n}$
- **Q.4** (a) Let $f: R \to R$ and $g: R \to R$ where R is the set of real numbers. Find fog and gof where $f(x) = x^2 2$, g(x) = x + 4 State whether these functions are injective, surjective, and bijective.


(b) Let $X = \{1,2,3,4,5\}$ and R,S,T be the relation as follows: $R = \{(x,y)/x+y=5\}$ S= $\{(1,2),(3,4),(2,2)\}T = \{(4,2),(2,5),(3,1),(1,3)\}$ (i) Write properties of R. (ii) Write matrix of R. (iii) Find $S \circ T$, $R \circ S$ and $S \circ R$.

OR


- **Q.4** (a) Define Tautology and Contradiction with examples. Prove that $P \rightarrow (P \lor Q)$ is tautology without constructing truth table.
 - (b) List all possible functions from $X = \{a,b,c\}toY = \{0,1\}$ and indicate in each case whether the function is one-to-one, is onto, and is one-to-one onto.
- Q.5 (a) Define Strong, unilateral, week component. Also Find Strong, unilateral, week component from the given digraph.

(b) Define adjacency matrix of a graph and obtain the adjacency matrix (A) for the following graph. State the in degree and out degree of all the vertices. Find A^2 , B_2 and Path matrix P.

- Q.5 (a) Define Tree. O7
 Give three different representation of the given tree. (v0(v1(v2)(v3)(v4))(v5(v6)(v7)(v8)(v9))(v10(v11)(v12))).
 - (b) Define: Isomorphic Graph. State whether the following graphs are isomorphic or not:
