Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-III • EXAMINATION – SUMMER • 2014

	Sub	pject Code: 650005 Date: 30-05-2014	
	Sub	ject Name: Parallel Programming	
		ne: 10:30 am - 01:00 pm Total Marks: 70	
		ructions:	
		1. Attempt all questions.	
		2. Make suitable assumptions wherever necessary.	
		3. Figures to the right indicate full marks.	
Q.1			14
	(a)	Explain UMA model in brief	
	(b)	What is advantage of distributed memory model?	
	(c)	Give example of control dependency.	
	(d)	Differentiate: parallel computing vs. distributed computing	
	(e)	Define: latency and throughput	
	(f)	Given a task that can be divided into m subtasks, each requiring one unit of time, how	
		much time is required for an m-staged pipeline to process n tasks?	
	(g)	What is cache coherence issue in multiprocessors?	
Q.2	(a)	Explain desirable characteristics of a machine having multiple processors	07
	(b)	Explain clusters in detail also explain features of HP Cluster Platform 6000 blade.	07
		OR	
	(b)	Explain crossbar switch interconnection with its advantage and disadvantage.	07
Q.3	(a)	What is dependency? Check whether following statements can be executed in parallel and find	07
		out dependencies if any	
		1) S1: $A = B + C$ S2: $D = 2*A$	
		2) S1: $A = B + C$ S2: $B=0$	
		3) $S1: A = B + C$ $S2: A = A - D$	
	(b)	What are the basic constraint behind shared memory programming? Explain General	07
		model of shared memory programming.	
		OR	
Q.3	(a)	Write detailed note on Loop dependence analysis and Array dependence analysis.	07
	(b)	Explain backward dependency and forward dependency with suitable example.	07
Q.4	(a)	Explain following primitive in process model under Unix	07
		1) Process creation 2) Merge processes 3) Shared memory allocation	
	(b)	Explain POSIX threads routines for acquiring and releasing mutex.	07
		OR	
Q.4	(a)	Explain synchronization primitives in Unix process model.	07
	(b)	What is condition variable? How can we wait on conditional variable and signal a	07
		conditional variable.	
Q.5	(a)	What is message passing model? Explain following MPI routines	07
	()	1) MPI_Finalize() (2) MPI_Send() (3) MPI_Recv()	
	(b)	Write parallel algorithm for histogram computation.	07
Q.5	(a)	OR Write short note on point to point and collective communication in message passing	07
	(**)	interface.	51
	(b)	Write Matrix multiplication algorithm for tightly coupled multiprocessors. ***********************************	07