Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER-IV EXAMINATION - SUMMER 2015

Subject Name: Analysis & Design of Algorithm									Date:20/05	20/05/2015 Marks: 70	
									Total Ma		
	1. A	Attempt all que Make suitable Figures to the	e assump	otions whe		cessary.					
Q.1	(a) (b) (c)	Explain all asymptotic notations Define Algorithm. List all the different algorithm strategies. State the functional algorithmic specification for computing power x ⁿ . Establish the correctness and efficiency of this functional algorithm using the Principles of Mathematical Induction.									
Q.2	(a) (b)	Write an algorithm for Breadth First Search (BFS) and explain it with example.									
	(b)	OR Briefly describe Pigeonhole Principle (or Dirichlet Drawer Principle) and 0'd also State Chinese Remainder theorem									
Q.3	(a)	Explain how to find out Longest Common Subsequence of two strings using Dynamic Programming method. Find any one Longest Common Subsequence of given two strings using Dynamic Programming. S1=abbacdcba S2=bcdbbcaac									
	(b)	Write down four basic steps used in a dynamic programming 07 solution. Briefly describe Travelling Salesman Problem and write down the basic solution methodology using dynamic programming approach. OR									
Q.3	(a)	Schedule th Jobs Profit Deadline		J2 10	ay that	so as to		J6 3 3	rofit.	07	
	(b)	Explain Dijkstra's Shortest Path Algorithm with suitable example. 07									
Q.4	(a) (b)	Explain in brief the concept of binomial heap and Fibonacci heap Write a short note on Approximate Solutions of NP-Complete problems.								04 05	
	(c)	What is Convex Hulls problem? Give an example of a 2-D Convex Hull and illustrate it with respect to the definition of Convex Hull. OR								05	
Q.4	(a)	Explain Splay Trees								04	
	(b)	What is Hamiltonian Circuit (Cycle)? Can it be used to solve Travelling Salesman Problem? Briefly Explain.								05	
Q.4	(c)	Discuss Reduction in terms of P & NP Complete Problems. Also explain the reduction for any one known problem								05	

Q.5	(a)	Explain:								07
		NP	Complete	Problem,	Time	Complexity,	Space	Efficiency,	Theta	
		Notation								

- (b) (i) Write a short note on Approximate Solutions to NP-Complete 07 problems.
 - (ii) Give examples to show that the assumption that "P means 'easy'" and "'not in P' means 'hard'" is not always true in practice.

OR

Q.5 (a) Explain Halting Problem.

(b) Briefly describe NP-Complete problems. What is the significance of NP 07 Complete problems? Give an example of NP-Complete problem.

07