Seat No.: \_\_\_\_\_ Enrolment No.\_\_\_\_

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

MCA - SEMESTER-IV • EXAMINATION - WINTER • 2014

|            | •           | ect Code: 2640008 Date: 06-12-2014 ect Name: Computer Graphics (CG)                                                                                                                                                                                                                                       |                                                                         |  |  |  |  |
|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|
| 7          | <b>Sime</b> | : 10:30 am - 01:00 pm Total Marks: 70                                                                                                                                                                                                                                                                     |                                                                         |  |  |  |  |
|            |             | <ol> <li>Attempt all questions.</li> <li>Make suitable assumptions wherever necessary.</li> <li>Figures to the right indicate full marks.</li> </ol>                                                                                                                                                      |                                                                         |  |  |  |  |
| Q.1        |             | Attempt the followings.  1) Define Data Visualization.  2) What is antialiasing?  3) What is 2D point clipping?  4) Define Rigid Body transformation  5) What is homogenous Coordinates?  6) Explain surface rendering.  7) Vanishing Point.                                                              | 14                                                                      |  |  |  |  |
| Q.2        | (a)         |                                                                                                                                                                                                                                                                                                           |                                                                         |  |  |  |  |
|            | <b>(b)</b>  | display and why? Write the bresenham line drawing algorithm and specify its advantages over DDA algorithm.                                                                                                                                                                                                | bresenham line drawing algorithm and specify its advantages over DDA 07 |  |  |  |  |
|            | <b>(b)</b>  | OR Write detailed note on Computer Graphics.                                                                                                                                                                                                                                                              | 07                                                                      |  |  |  |  |
| Q.3        | (a)         | For a given center at origin and radius 10, digitize the midpoint circle algorithm for                                                                                                                                                                                                                    |                                                                         |  |  |  |  |
|            | <b>(b)</b>  | first octant. Write Short note on following.  (1) Inside-Outside Test.  (2) Non emissive device.  OR                                                                                                                                                                                                      | 08                                                                      |  |  |  |  |
| Q.3        | (a)<br>(b)  | Explain General two dimensional pivot point rotation and derive its matrix.  (1) Explain following functions.  (i) glutInitWindowsize() (ii) glColor3f() (iii) glMatrixMode() (iv) glCopyPixels()  (2) Describe the difference between 4-connected and 8-connected Boundary fill algorithm.               |                                                                         |  |  |  |  |
| Q.4        | (a)<br>(b)  | Explain Cohen-Sutherland line clipping algorithm.  (1) Find the transformation matrix that transforms the given square ABCD to half its size with respect to selected fixed position (2,2) for the coordinates A (1,1), B(3,1), C(3,3) and D(1,3). Also get the resultant coordinates of the square ABCD. | 07<br>04                                                                |  |  |  |  |
|            |             | (2) Explain three dimensional viewing pipeline.                                                                                                                                                                                                                                                           | 03                                                                      |  |  |  |  |
| $\Omega 4$ | (a)         | OR What is polygon clipping? Explain Sutherland Hodgeman polygon clipping algorithm.                                                                                                                                                                                                                      | 07                                                                      |  |  |  |  |
| Q.4        | (b)         | <ul> <li>(1) Apply the following transformation to square A(0,0), B(1,0), C(1,1) and D(0,1).</li> <li>- Shear the original square with shear parameter value of 0.5 relative to the line yref = -1.</li> <li>- Reflect the original square about the origin.</li> </ul>                                   | 04                                                                      |  |  |  |  |
|            |             | (2) Write down 3 x 3 homogenous matrices for Translation, Rotation and Scaling.                                                                                                                                                                                                                           | 03                                                                      |  |  |  |  |

| 1    |                               | 11                                     |      | 1          |       |
|------|-------------------------------|----------------------------------------|------|------------|-------|
| htti | $\mathbf{n} \cdot \mathbf{n}$ | /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 0111 | aratstudy  | I com |
| 1111 | <b>U•</b> /                   | / ** ** ** .                           | - Su | araibiaa ' | ,     |

| Q.5 | (a)        | What is projection? Differentiate between parallel and perspective projection. Explain perspective projection in brief. | 07        |
|-----|------------|-------------------------------------------------------------------------------------------------------------------------|-----------|
|     | <b>(b)</b> | What is Shear? Explain various cases for shear with diagrams and equations.                                             | 07        |
|     | ` ,        | OR                                                                                                                      |           |
| Q.5 | (a)        | Explain different types of parallel projection in details.                                                              | <b>07</b> |
|     | <b>(b)</b> | What is window and viewport. Explain two dimensional window to viewport transformation.                                 | 07        |
|     |            |                                                                                                                         |           |

\*\*\*\*\*