GUJARAT TECHNOLOGICAL UNIVERSITY

MCA – SEMESTER–IV • EXAMINATION – WINTER 2015

Date:09/12/2015 Subject Code: 640005

Subject Name: Data Warehousing & Data Mining

Time: 10.30 a.m. To 01.00 p.m. Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q. 01 **Answer The following Questions**

(i)	Define The Term "Data Warehouse".	[02]
(ii)	What is ROLAP?	[02]
(iii)	What is Data Mining?	[02]
(iv)	Give The Full-Form of "OLAP".	[01]

- (iv) Give The Full-Form of "OLAP".
- **(b) Answer The following Questions**
 - (i) Define The Term "Virtual Warehouse". [02] (ii) What is Data cleaning in Data Preprocessing? [02](iii) What is Data Generalization? [02](iv) What is the accuracy of classifier? [01]
- **Answer The following Questions** O. 02
 - (i) Define The Term "Supervised Learning". [02](ii) What is Learning by Observation? [02]
 - (iii) What is Lift-ratio for Association Rule Mining? [02]
 - (iv) What is Prediction? [01]
 - Differentiate Operational Database Systems and Data Warehouses. **(b)** [07]

OR

Explain Three-Tier Data Warehouse Architecture. **(b)**

- [07]
- Q. 03 Find out the Association Rules from Given Dataset with respect to [07] (a) Minimum Support = 60% and Minimum Confidence = 80%. Obtain the Rules with Degree 1 only.

i.e. for any transaction, $buys(X, item1) \rightarrow buys(X, item3)$

Transection ID	Items Bought
T001	{M, O, N, K, E, Y}
T002	{D, O, N, K, E, Y}
T003	$\{M, A, K, E\}$
T004	$\{M, U, C, K, Y\}$
T005	{C, O, O, K, I, E}

OR

Answer The following Questions

(i) How is class comparison performed? [04] [03]

(ii) What is Attribute Generalization?

Q. 03 (a) Using the Following contingency table of supermarket transaction data, [07] answer the following.

	Hot – Dog	$\overline{Hot-Dog}$	\sum_{row}
Hamburgers	2000	500	2500
Hamburgers	1000	1500	2500
\sum_{coloum}	3000	2000	5000

- (i) Is the association rule "Hot-dog → Hamburger" Strong?

 Minimum Support = 25% and Minimum Confidence = 50%.
- (ii) What kind of correlation relationship exists between the purchase of hot dogs & the purchase of hamburgers?
- (b) Answer The following Questions
 - (i) Explain the Attribute Oriented Induction.

[04]

(ii) What is Class Characterization?

[03]

Q. 04 (a) Predict the class label "Defaulted Borrower" of the test record [07]

X = (Home Owner = No; Marital Status = Married; Income = 1,20,000)

using Naïve Bayes classifier on following data:

ID	Home	Marital	Annual	Defaulted
עו	Owner	Status	Income	Borrower
1	Yes	Single	1,25,00 0	No
2	No	Married	1,00,00	No
3	No	Single	70,000	No
4	Yes	Married	1,20,00 0	No
5	No	Divorced	95,000	Yes
6	No	Married	60,000	No
7	Yes	Divorced	2,20,00	No
8	No	Single	85,000	Yes
9	No	Married	75,000	No
10	No	Single	90,000	Yes

- (b) Answer The following Questions
 - (i) How to compare the Accuracy of Classifier?

[04]

(ii) Explain: Concept Hierarchy Generation with Binning and Histogram [03] Analysis.

OR

Q. 04 (a) Find out which attribute is suitable to be the perfect split point from the [07] Given data, use information gain measure. Calculate only first split point. "Risk Class" is the predicating attribute.

ID	Owns	Gender	Employed	Risk
ID	Home			Class
1	Yes	Male	Yes	В
2	No	Female	Yes	Α
3	Yes	Female	Yes	C
4	Yes	Male	No	В
5	No	Female	Yes	C
6	No	Female	Yes	A
7	No	Male	No	В
8	Yes	Female	Yes	A
9	No	Female	Yes	C
10	Yes	Female	Yes	C

(b) Answer The following Questions

- (i) Discuss the essential data preparing steps for classification and [04] prediction.
- (ii) How to Generate Concept Hierarchy for Categorical data? [03]
- Q. 05 (a) Explain K-Means Algorithm with its pseudo-code and example. [07]
 - (b) Answer The following Questions
 - (i) List out Four Typical cases of Data Mining in Retail Industry. [04]
 - (ii) Explain: Density-based Clustering method. [03]

OR

- Q. 05 (a) What is an outlier? Explain Statistical Distribution-Based Outlier Detection. [07]
 - (b) Answer The following Questions
 - (i) List out Four Typical cases of Data Mining in Telecommunication [04] Industry.
 - (ii) Explain: Constraint-based Clustering method. [03]
