Linspace gives evenly spaced samples.
Syntax:
numpy.linspace(start, stop, num, endpoint)
Here,
Example:
For instance, it can be used to create 10 values from 1 to 5 evenly spaced.
import numpy as np np.linspace(1.0, 5.0, num=10)
Output:
array([1. , 1.44444444, 1.88888889, 2.33333333, 2.77777778, 3.22222222, 3.66666667, 4.11111111, 4.55555556, 5. ])
If you do not want to include the last digit in the interval, you can set endpoint to false
np.linspace(1.0, 5.0, num=5, endpoint=False)
Output:
array([1. , 1.8, 2.6, 3.4, 4.2])
LogSpace returns even spaced numbers on a log scale. Logspace has the same parameters as np.linspace.
Syntax:
numpy.logspace(start, stop, num, endpoint)
Example:
np.logspace(3.0, 4.0, num=4)
Output:
array([ 1000. , 2154.43469003, 4641.58883361, 10000. ])
Finaly, if you want to check the memory size of an element in an array, you can use itemsize
x = np.array([1,2,3], dtype=np.complex128) x.itemsize
Output:
16
Each element takes 16 bytes.
Below, a summary of the essential functions used with NumPy
| Objective | Code |
|---|---|
| Create a linear space | linspace |
| Create a log space | logspace |